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Bearing-Only Formation Tracking Control of
Multiagent Systems

Shiyu Zhao , Zhenhong Li , and Zhengtao Ding

Abstract—This paper studies the problem of bearing-only
formation control of multiagent systems, where the control
of each agent merely relies on the relative bearings to its
neighbors. Although this problem has received increasing
research attention recently, it is still unsolved to a large
extent due to its highly nonlinear dynamics. In particular,
the existing control approaches are only able to solve the
simplest scenario where the target formation is stationary
and each agent is modeled as a single integrator. The main
contribution of this paper is to propose new bearing-only
formation control laws to 1) track moving target formations
and 2) handle a variety of agent models including single-
integrator, double-integrator, and unicycle models. These
control laws are an important step towards the application
of bearing-only formation control in practical tasks. Both
numerical simulation and real experimental results are pre-
sented to verify the effectiveness of the theoretical results.

Index Terms—Bearing measurements, bearing rigidity,
formation control, multiagent systems.

I. INTRODUCTION

THIS paper studies multiagent distributed formation con-
trol that aims to steer a group of agents to form a desired

geometric pattern in a distributed manner. We particularly fo-
cus on the problem where each agent is only able to measure
the relative bearings to their nearest neighboring agents while
relative distance or position information is unavailable. Com-
pared to the formation control approaches that rely on relative
position measurements [1], the bearing-only formation control
approach poses minimal requirements on the sensing ability of
each agent, and hence provides a practical solution to achieve
onboard-sensor-based formation control. In practice, bearing
measurements can be obtained by, for example, vision sensors
[2] or wireless sensor arrays [3], [4].

Despite the recent advances on bearing-only formation con-
trol, many important problems in this area are still unsolved due
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to the highly nonlinear formation dynamics. In particular, the ex-
isting bearing-only control laws are merely applicable to solve
the simplest scenario where the target formation is stationary
and each agent is modeled as a single integrator [5]–[16]. From
the practical point of view, it is necessary to study more realistic
models such as double integrators or unicycles. For example,
multicopter drones and ground vehicles may be approximated
by double-integrator and unicycle models. Formation control
laws designed for these models can generate more feasible tra-
jectories to be tracked by real vehicles.

Another important practical problem is how to track moving
target formations using bearing measurements. The ability of a
formation to move is important to achieve desired navigation
tasks and respond to dynamic environments to, for example,
avoid obstacles. However, it is still an open problem whether
bearing measurements could be used to achieve moving for-
mations. The existing bearing-only formation control laws are
designed for stationary target formations. When applied to track-
ing moving target formations, these control laws would result
in tracking errors. More importantly, the tracking errors may
diverge to infinity, because these control laws merely relies on
bearing errors that are always bounded even when the position
errors are unbounded. As a result, there is a natural saturation
constraint in these bearing-only formation control laws. Un-
less the control gains are sufficiently large or the leader agents
move sufficiently slow, the position-tracking error will diverge
to infinity. Due to this problem, it is necessary to design new
bearing-only control laws to track moving target formations.

In order to handle more realistic agent models and moving tar-
get formations, we started our research by revisiting a bearing-
only formation control law, which is a particular form of a more
general family of controllers proposed in [15]. This control law
is only applicable to the single-integrator agent model and sta-
tionary target formations. However, unlike many other existing
bearing-only formation control laws, it is a gradient-descent
control law, which is favorable from the stability analysis point
of view. This control law has not attracted sufficient attention
up to now probably because its stability analysis is based on
optimization techniques and challenging to generalize to cases
that are more complicated. The first contribution of our study
is to present a new stability analysis of this formation control
law using standard Lyapunov approaches. Such a new stabil-
ity analysis is nontrivial since it requires new techniques de-
veloped based on recent work of bearing localizability [17].
Our analysis reveals some new properties of the control law,
such as exponential convergence rate and, more importantly, it
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lays a foundation for the design of new bearing-only control
laws.

The main contribution of this paper is to propose novel
bearing-only formation control laws that can handle moving
target formations and a variety of agent models including sin-
gle integrators, double integrators, and unicycles. In particular,
for single-integrator agent models, we propose a proportional-
integral control law to track moving target formations using
bearing measurements. For double-integrator agent models, a
new bearing-only formation control law that requires bearing
measurements and the varying rates of bearings is proposed.
Similar to bearing measurements, the varying rates of relative
bearings can be conveniently measured by visual sensing or sen-
sor arrays in practice. Finally, bearing-only formation control
laws are proposed for unicycle agents subject to velocity satu-
ration and other motion constraints such as obstacle avoidance.
These control laws are a key step towards the application of
bearing-only formation control in practical tasks. Both numer-
ical simulation and real experimental results are presented to
verify the effectiveness of the theoretical results.

The rest of the paper is organized as follows. Section II
presents the problem setup and some necessary preliminary
results. Sections III, IV, and V address bearing-only formation
tracking control of single-integrator, double-integrator, and uni-
cycle agent models, respectively. Simulation and experimen-
tal results are given in Section VI. Conclusions are drawn in
Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations for Formation

Consider n mobile agents in Rd (n ≥ 2 and d ≥ 2). Let
pi(t) ∈ Rd be the position of agent i ∈ {1, . . . , n} at time t, and
p = [pT

1 , . . . , pT
n ]T ∈ Rdn be the configuration of the agents.

The interaction among the agents is described by a fixed graph
G = (V, E) which consists of a vertex set V = {1, . . . , n} and
an edge set E ⊆ V × V . The edge (i, j) ∈ E indicates that agent
i can measure the relative bearing of agent j, and hence agent
j is a neighbor of i. The set of neighbors of agent i is de-
noted as Ni = {j ∈ V : (i, j) ∈ E}. This paper only considers
undirected graphs where (i, j) ∈ E ⇔ (j, i) ∈ E . A formation,
denoted as (G, p), is G with its vertex i mapped to pi for all
i ∈ V .

Define the edge vector and bearing vector for edge (i, j),
respectively, as

eij := pj − pi, gij :=
eij

‖eij‖
where ‖ · ‖ denotes the Euclidean norm of a vector or the spectral
norm of a matrix. The unit vector gij represents the relative
bearing of pj with respect to pi . Note that eij = −eji and gij =
−gji . For the bearing vector gij , define

Pgi j
:= Id − gij g

T
ij ∈ Rd×d

where Id ∈ Rd×d is the identity matrix. Note that Pgi j
is an

orthogonal projection matrix that can geometrically project a
vector onto the orthogonal compliment of gij . It can be verified
that Pgi j

is positive semidefinite and Null(Pgi j
) = span{gij}.

As a result, a vector x ∈ Rd is parallel to gij if and only if
Pgi j

x = 0. This orthogonal projection matrix is widely used in
bearing-based control and estimation problems [10], [17]. More-
over, it follows from gij = eij /‖eij‖ that the time derivative of
gij is

ġij =
Pgi j

‖eij‖ ėij . (1)

Since Pgi j
gij = 0, ġij is orthogonal to gij and eij . As a result,

gT
ij ġij = 0 and eT

ij ġij = 0.
Oriented graphs are widely used in this paper. Specifically,

an orientation of an undirected graph is the assignment of a
direction to each edge. An oriented graph is an undirected graph
together with an orientation [18]. Consider an arbitrary oriented
graph of G. Let m be the number of undirected edges in G.
Hence, the oriented graph has m directed edges. Suppose edge
(i, j) in G corresponds to the kth directed edge in the oriented
graph where k ∈ {1, . . . , m}. The edge and bearing vectors for
the kth directed edge can be expressed as

ek := eij = pj − pi, gk :=
ek

‖ek‖ .

Similarly, ġk = Pgk
ėk /‖ek‖, gT

k ġk = 0, and eT
k ġk = 0. Denote

e = [eT
1 , . . . , eT

m ]T and g = [gT
1 , . . . , gT

m ]T . Let H ∈ Rm×n be
the incidence matrix of the oriented graph. Specifically, in the
kth row of H , [H]ki = −1 since vertex i is the tail of edge k,
[H]kj = 1 since vertex j is the head of edge k, and all the other
entries in the kth row are zero. By definition

e = (H ⊗ Id)p := H̄p

where ⊗ denotes the Kronecker product. For a connected graph,
it holds that H1n = 0 and rank(H) = n − 1 [18], where 1n =
[1, . . . , 1]T ∈ Rn .

Without loss of generality, suppose the first n� agents are
leaders and the rest nf = n − n� agents are followers. Let
V� = {1, . . . , n�} andVf = V \ V� be the sets of leaders and fol-
lowers, respectively. The positions of the leaders and followers
are denoted as p� = [pT

1 , . . . , pT
n�

]T and pf = [pT
n� +1 , . . . , p

T
n ]T ,

respectively. Then p = [pT
� , pT

f ]T . The velocities of the leaders
and followers are denoted as v� = ṗ� and vf = ṗf , respectively.

B. Target Formation

The desired target formation that the agents should achieve is
described as below.

Definition 1 (Target formation): The target formation
(G, p∗(t)) satisfies the constant interneighbor bearings
{g∗ij}(i,j )∈E and the time-varying leader positions {p∗i (t)}i∈V�

.
The leaders move at a common constant velocity vc ∈ Rd .

The target formation in Definition 1 is jointly determined
by the constant bearings and moving leaders. It has two key
properties. The first property is existence. In this paper, we only
consider feasible bearings and leader positions so that the target
formation defined above exists. Feasible bearings and leader
positions can be easily obtained from a formation that has the
desired geometric pattern.

The second key property of the target formation is uniqueness.
In order to ensure the uniqueness of the target formation, the
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Fig. 1. Target formation in (a) cannot be uniquely determined by the
bearings and leader positions. The target formations in (b) and (c) are
unique. The target formation in (c) is a 3-D cube.

bearings and leader positions must satisfy certain conditions. To
characterize these conditions, we need to introduce an important
matrix termed bearing Laplacian [17]. For the target formation,
define a matrix B ∈ Rdn×dn with the ijth block of submatrix as

[B]ij =

⎧
⎪⎪⎨

⎪⎪⎩

0d×d , i 	= j, (i, j) /∈ E ,

−Pg ∗
i j

, i 	= j, (i, j) ∈ E ,
∑

k∈Ni
Pg ∗

i k
, i = j, i ∈ V.

The bearing Laplacian matrix B is a matrix-weighted Laplacian
that characterizes both the underlying graph and the bearings
of the target formation. For undirected graphs, it holds that B
is symmetric positive semidefinite and span{p∗,1n ⊗ Id} ⊆
Null(B) [17]. According to the partition of leader and follower
agents, we can partition B to

B =

[ B�� B�f

Bf � Bf f

]

whereBf f ∈ Rdnf ×dnf . The uniqueness of the target formation
could be characterized by the bearing Laplacian as shown in the
following lemma.

Lemma 1 (Condition for unique target formation [17]): The
target configuration p∗(t) can be uniquely determined by the
bearings {g∗ij}(i,j )∈E and leader positions {p∗i }i∈V�

if and only
if Bf f is nonsingular.

When Bf f is nonsingular, the position and velocity of the
followers in the target formation are uniquely determined as
p∗f (t) = −B−1

f f Bf �p
∗
�(t) and v∗

f (t) = −B−1
f f Bf �v

∗
� (t) [17]. In

this paper, the leaders have the same common velocity vc , i.e.,
v∗

� (t) = 1n�
⊗ vc . It can be calculated that v∗

f (t) = 1nf
⊗ vc so

that all the followers in the target formation move at the same
common velocity [19, Th. 2]. Let p̄∗(t) :=

∑n
i=1 p∗i (t)/n and

p̃∗ := p∗(t) − 1n ⊗ p̄∗(t). When the target formation is unique,
the vector p̃∗ is constant and represents the unique geometric
pattern of the formation. The vector p̄∗(t) is time-varying and
represents the centroid of the target formation that moves at the
constant velocity vc .

Illustrative examples of nonunique and unique formations are
shown in Fig. 1. In order to ensure a unique target formation,
there must exist sufficient and appropriate leaders. It is worth
noting that at least two leaders are required to ensure a unique
target formation. Details on leader selection can be found in
[17]. More examples and other conditions for uniqueness can
be found in [17, Sec. 4]. Note that uniqueness is called bearing
localizability in the context of network localization [17].

This paper only considers unique target formations. Other-
wise, the target formation is not guaranteed to achieve by any
control approaches. Hence, we make the following assumption.

Assumption 1 (Unique target formation): Assume that the
target formation (G, p∗) in Definition 1 is unique, i.e., Bf f is
positive definite.

C. Problem Statement

The control problem to be solved in this paper is to steer the
agents to achieve the target formation based merely on bearing
measurements. This problem is formally stated as follows.

Problem 1 (Bearing-only formation tracking control): De-
sign control input for agent i ∈ Vf based merely on the bear-
ing measurements {gij (t)}j∈Ni

and the varying rate of the
bearings {ġij (t)}j∈Ni

such that gij → g∗ij for all (i, j) ∈ E as
t → ∞.

Several remarks on Problem 1 are given below. First, since
the target formation is uniquely determined by the bearings (and
leader positions), once the bearings reach the desired values,
the target formation is achieved. Second, it is only required
to control the followers whereas the leaders are assumed to
be controlled properly so that they have desired positions. The
reason why we do not consider the coordination of the leaders
is that there are merely a very small number of leaders such
as two, which is different from containment control problems
where there may exist many leaders which require sophisticated
distributed coordination [20]. Third, although the underlying
graph of the entire formation is assumed to be undirected, leaders
are controlled independently and do not use the information of
their neighbors whereas the control of a follower does rely on
the information of its neighbors.

Interagent collision avoidance is an important problem in
multiagent formation control. This problem, however, has not
been considered in many existing formation control approaches
[1], [21], because the system convergence would become ex-
tremely difficult to analyze if it is considered. In fact, given a
specific formation control law, interagent collision is determined
by the initial formation condition. However, it is nontrivial to
identify those initial conditions that would lead to interagent col-
lision even for simple linear formation dynamics. As a result,
many existing formation control approaches rely on an implicit
assumption of interagent collision avoidance. In this paper, we
also adopt the collision avoidance assumption.

Assumption 2 (Interagent collision avoidance): Assume no
neighboring agents collide with each other during the forma-
tion evolvement.

Assumption 2 ensures that the bearing vector between any
pair of neighbors is always well defined during formation
evolvement. Without this assumption, the convergence analy-
sis of the control laws proposed in the rest of the paper is still
valid, but only before collision occurs. In this paper, we also
present sufficient conditions to simultaneously guarantee colli-
sion avoidance and system convergence. With these conditions,
this collision-free assumption could be dropped.

In the rest of the paper, three types of agent dynamical
models will be studied: single-integrator, double-integrator,
and unicycle.
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III. BEARING-ONLY FORMATION TRACKING CONTROL:
SINGLE-INTEGRATOR AGENTS

This section studies single-integrator agent models: ṗi(t) =
ui(t), where ui(t) is the velocity input to be designed. The first
subsection addresses the case of stationary target formations and
reanalyzes a control law proposed in [15]. The second subsection
generalizes this control law to track moving target formations.

A. Stationary Target Formation

Suppose the leaders are stationary (i.e., vc = 0). For the lead-
ers, it holds that ṗi(t) = 0 for i ∈ V� . For the followers, consider
the bearing-only control law

ṗi(t) =
∑

j∈Ni

(
gij (t) − g∗ij

)
, i ∈ Vf . (2)

Control law (2) is a particular form of a general family of con-
trollers designed for bearing-only and distance-based formation
control tasks proposed in [15, eq. (13)]. Its asymptotic stability
has been analyzed using optimization techniques in [15]. The
novelty of this subsection is to present a new stability analysis
based on Lyapunov approaches. This stability analysis reveals
some new properties of the control law, such as exponential con-
vergence rate and lays a foundation for designing new bearing-
only control laws.

Consider an arbitrary oriented graph and suppose H , g(t),
and g∗ are the corresponding incidence matrix, bearing vectors
at t, and desired bearing vectors, respectively. Then, control law
(2) can be rewritten in a matrix-vector form as

ṗ = −
[

0 0

0 Idnf

]

H̄T(g − g∗) (3)

whose initial state is p(0) = [(p∗�)
T , pT

f (0)]T where pf (0) could
be arbitrary. To analyze the formation stability, we first introduce
two useful lemmas about the key quantity pTH̄T(g − g∗).

Lemma 2: Suppose no agents coincide in p∗ or p. It holds
that

pTH̄T(g − g∗) ≥ 0 (4)

(p∗)TH̄T(g − g∗) ≤ 0 (5)

(p − p∗)TH̄T(g − g∗) ≥ 0 (6)

where the equalities hold if and only if g = g∗.
Proof: First,

pTH̄T(g − g∗) = eT(g − g∗)

=
m∑

k=1

(eT
k gk − eT

k g∗k )

=
m∑

k=1

‖ek‖(1 − gT
k g∗k )

=
1
2

m∑

k=1

‖ek‖‖gk − g∗k‖2 ≥ 0.

Since ‖ek‖ 	= 0, we know pTH̄T(g − g∗) = 0 if and only if
gk = g∗k for all k. Similarly, (5) holds because (p∗)TH̄T(g −
g∗) = (e∗)T(g − g∗) =

∑m
k=1 ‖e∗k‖((g∗k )Tgk − 1) ≤ 0. Since

‖e∗k‖ 	= 0, the equality holds if and only if gk = g∗k for all k.
Inequality (6) can be obtained by combining (5) and (4). �

The following result establishes the equivalence between
pTH̄T(g − g∗) and pTBp.

Lemma 3: Suppose no agents coincide in p∗ or p. It holds
that

pTH̄T(g − g∗) ≥ 1
2maxk ‖ek‖pTBp (7)

where B is the bearing Laplacian of the target formation (G, p∗).
When g − g∗ is sufficiently small so that gT

k g∗k ≥ 0 for all k, it
holds that

pTH̄T(g − g∗) ≤ 1
mink ‖ek‖pTBp. (8)

Proof: Note that B can be expressed as B = H̄TD(Pg ∗
k
)H̄

where D(Pg ∗
k
) = blkdiag(Pg ∗

1
, . . . , Pg ∗

m
) [17, Lemma 2]. It fol-

lows that:

pTBp = pTH̄TD(Pg ∗
k
)H̄p = eTD(Pg ∗

k
)e

=
m∑

k=1

eT
k (Id − g∗k (g∗k )T)ek =

m∑

k=1

‖ek‖2(1 − (gT
k g∗k )2)

=
m∑

k=1

‖ek‖2(1 − gT
k g∗k )(1 + gT

k g∗k ). (9)

Since 1 + gT
k g∗k ≤ 2, it follows from (9) that:

pTBp ≤ 2max
k

‖ek‖
m∑

k=1

‖ek‖(1 − gT
k g∗k )

= 2max
k

‖ek‖pTH̄T(g − g∗).

Inequality (7) follows immediately.
Suppose that g − g∗ is sufficiently small so that gT

k g∗k ≥ 0 for
all k (i.e., the angle between gk and g∗k is no greater than π/2).
Since 1 + gT

k g∗k ≥ 1, it is implied by (9) that

pTBp ≥ min
k

‖ek‖
m∑

k=1

‖ek‖(1 − gT
k g∗k )

= min
k

‖ek‖pTH̄T(g − g∗).

Inequality (8) follows immediately. �
With the above two lemmas, we prove the exponential stabil-

ity of (3) as follows. The position error is defined as

δp(t) = p(t) − p∗.

The objective is to prove that δp(t) → 0 as t → ∞.
Theorem 1 (Single-integrator formation stabilization): Un-

der Assumptions 1 and 2, p(t) converges to p∗ exponentially
fast by the action of control law (3).

Proof: Note that δp = [0, δT
pf

]T since p� = p∗� . As a result,

δT
p

[
0 0
0 Idnf

]

= δT
p .
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Consider the Lyapunov function

V =
1
2
‖δp‖2 .

The derivative of V along the system trajectory is

V̇ = δT
p δ̇p = δT

p ṗ

= −δT
p

[
0 0
0 Idnf

]

H̄T(g − g∗)

= −δT
p H̄T(g − g∗)

= −(p − p∗)TH̄T(g − g∗)

= −pTH̄T(g − g∗) + (p∗)TH̄T(g − g∗)

≤ −pTH̄T(g − g∗) (10)

where the last inequality is due to (5). Substituting (7) into (10)
gives

V̇ ≤ − 1
2maxk ‖ek‖pTBp ≤ 0. (11)

Since Bp∗ = 0, we have pTBp = (p − p∗)TB(p − p∗) =
δT
p Bδp . Furthermore, since δp = [0, δT

pf
]T , we have δT

p Bδp =
δT
pf
Bf f δpf

≥ λmin(Bf f )‖δpf
‖2 = λmin(Bf f )‖δp‖2 . Substitut-

ing into (11) gives

V̇ ≤ − λmin(Bf f )
2maxk ‖ek‖‖δp‖2 . (12)

Note that

max
k

‖ek‖ ≤ ‖e‖ = ‖H̄p‖ = ‖H̄(p − p∗ + p∗)‖

≤ ‖H̄δp‖ + ‖H̄p∗‖
= ‖H̄δp‖ + ‖H̄p̃∗‖
≤ ‖H̄‖(‖δp‖ + ‖p̃∗‖) (13)

where the last equality is due to H̄p̃∗ = H̄(p∗ − 1n ⊗ p̄) =
H̄p∗. Since V̇ ≤ 0, we have ‖δp(t)‖ ≤ ‖δp(0)‖. Substituting
(13) into (12) yields

V̇ ≤ − λmin(Bf f )
‖H̄‖(‖δp(0)‖ + ‖p̃∗‖)
︸ ︷︷ ︸

a

‖δp‖2

2
:= −aV (14)

which indicates exponential convergence rate. �
The convergence rate a in (14) is jointly determined by four

parameters: 1) The graph topology described by H̄ , 2) geomet-
ric pattern of the target formation described by p̃∗, 3) initial
error δp(0), and 4) the smallest eigenvalue λmin(Bf f ). Note
that λmin(Bf f ) could be interpreted as a measure of the “de-
gree of uniqueness” of the target formation, which intuitively
describes how far the target formation is from being nonunique.
One immediate conclusion is that the convergence rate would
be large if the formation is close to the target one (i.e., ‖δp(0)‖
is small) or the degree of uniqueness is strong (i.e., λmin(Bf f )
is large). Designing optimal graph topologies and formation ge-
ometric patterns to minimize ‖H̄‖ and ‖p̃∗‖ could also speed up
convergence and it deserves further study in the future.

Note that Theorem 3 relies on the assumption of intera-
gent collision avoidance. To remove this assumption, we next
give a sufficient condition on the initial formation to simul-
taneously guarantee collision avoidance and formation con-
vergence. Suppose γ is the desired minimum separation be-
tween any two agents during formation evolvement and satisfies
0 < γ < mini,j∈V ‖p∗i − p∗j‖.

Corollary 1 (Sufficient condition for collision avoidance):
Under Assumption 1, if the initial formation is sufficiently close
to the target formation so that

‖δp(0)‖ ≤ ε :=
1√
n

(

min
i,j∈V

‖p∗i − p∗j‖ − γ

)

(15)

then ‖pi(t) − pj (t)‖ ≥ γ for all i, j ∈ V and all t ≥ 0 and p(t)
converges to p∗ exponentially fast.

Proof: For any i, j ∈ V and any t ≥ 0, it holds that

pi(t) − pj (t) = [pi(t) − p∗i ] − [pj (t) − p∗j ] + [p∗i − p∗j ].

It follows that

‖pi(t) − pj (t)‖ ≥ ‖p∗i − p∗j‖ − ‖pi(t) − p∗i ‖ − ‖pj (t) − p∗j‖

≥ ‖p∗i − p∗j‖ −
n∑

k=1

‖pk (t) − p∗k‖

≥ ‖p∗i − p∗j‖ −
√

n‖p(t) − p∗‖
= ‖p∗i − p∗j‖ −

√
n‖δp(t)‖. (16)

At t = 0, substituting (15) into the above inequality gives
‖pi(0) − pj (0)‖ ≥ γ and hence there is no interagent collision
in the initial formation. Since V̇ ≤ 0 as shown in (11) in the ab-
sence of interagent collision, ‖δp(0)‖ ≤ ε implies ‖δp(t)‖ ≤ ε
for all t. Otherwise, there must exist an escape time t1 such
that ‖δp(t1)‖ = ε and V̇ (t1) > 0, which is impossible. As a re-
sult, ‖pi(t) − pj (t)‖ ≥ γ is guaranteed for all t by (16). It then
follows from (14) that ‖δp(t)‖ converges to zero exponentially
fast. �

B. Moving Target Formation

When the leaders move at a nonzero constant velocity vc , we
generalize (2) to propose a new control law

ṗi(t) = kp

∑

j∈Ni

(
gij (t) − g∗ij

)

+ kI

∫ t

0

∑

j∈Ni

(
gij (τ) − g∗ij

)
dτ, i ∈ Vf (17)

where kp and kI are constant and positive control gains. The idea
of (17) is to simply introduce an integral term, yet the stability
analysis is nontrivial as shown as follows.

Denote

ηi(t) = kI

∫ t

0

∑

j∈Ni

(
gij (τ) − g∗ij

)
dτ
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and η = [ηT
1 , . . . , ηT

n ]T = [ηT
� , ηT

f ]T ∈ Rdn . Then, the matrix-
vector form of control law (17) is

ṗ = −kp

[
0 0

0 Idnf

]

H̄(g − g∗) + η,

η̇ = −kI

[
0 0

0 Idnf

]

H̄(g − g∗).

The initial values satisfy

p(0) =

[
p∗�(0)

pf (0)

]

η(0) =

[
1n�

⊗ vc

ηf (0)

]

where pf (0) and ηf (0) could be arbitrary. In order to prove
formation stability, define the error states as

δp = p − p∗ η̃ = η − 1n ⊗ vc .

The objective is to prove that δp → 0 and η̃ → 0 as t → ∞. To
do that, it is necessary to first establish the equivalence between
eT(g − g∗) and ‖δp‖.

Corollary 2: Suppose no agents coincide in p∗ or p. It holds
that

eT(g − g∗) ≥ λmin(Bf f )‖δp‖2

2‖H̄‖(‖δp‖ + ‖p̃∗‖)
eT(g − g∗) ≤ 2

√
m‖H̄‖(‖δp‖ + ‖p̃∗‖). (18)

When g − g∗ is sufficiently small such that gT
k g∗k ≥ 0 for

all k, a tight upper bound can be obtained as eT(g − g∗) ≤
λmax(Bf f )‖δp‖2/mink ‖ek‖.

Proof: First of all, since δp = [0, δT
pf

]T , we have δT
p Bδp =

δT
pf
Bf f δpf

. It follows from Bp∗ = 0 that

pTBp = δT
p Bδp ≥ λmin(Bf f )‖δpf

‖2 = λmin(Bf f )‖δp‖2

(19)

pTBp = δT
p Bδp ≤ λmax(Bf f )‖δpf

‖2 = λmax(Bf f )‖δp‖2 .

(20)

The lower bound in (18) can be obtained by substitut-
ing (19) and (13) into (7). In order to obtain an up-
per bound, note that eT(g − g∗) =

∑m
k=1 ‖ek‖(1 − gT

k g∗k ) ≤
2
∑m

k=1 ‖ek‖ ≤ 2
√

m
√∑m

k=1 ‖ek‖2 = 2
√

m‖e‖, where the
last inequality follows from the inequality between arithmetic
and quadratic means. It follows from the upper bound of ‖e‖ in
(13) that eT(g − g∗) ≤ 2

√
m‖H̄‖(‖δp‖ + ‖p̃∗‖). This bound is

not tight because it is not zero when ‖δp‖ = eT(g − g∗) = 0.
When g − g∗ is sufficiently small so that gT

k g∗k ≥ 0 for
all k (i.e., the angle between gk and g∗k is no larger
than π/2), substituting (20) into (8) gives eT(g − g∗) ≤
λmax(Bf f )‖δp‖2/mink ‖ek‖. This upper bound is tight in the
sense that it is zero when ‖δp‖ = 0. �

Remark 1: Inequality (18) is particularly useful in the for-
mation stability analysis as shown later. It must be noted that this
inequality is meaningful only if the target formation is unique
(i.e., Assumption 1 is fulfilled). Otherwise, if the target forma-
tion is not unique and hence λmin(Bf f ) = 0, then (18) degrades

to eT(g − g∗) ≥ 0, which is the same as (4). In this case, δp

could be unbounded even if eT(g − g∗) is bounded or zero. For
example, for the target formation in Fig. 1(a), the target bear-
ings could be satisfied so that eT(g − g∗) = 0 while the left two
agents can move to the left to generate arbitrarily large δp .

The formation stability is analyzed as follows.
Theorem 2 (Single-integrator formation tracking): Under

Assumptions 1 and 2, p(t) converges to p∗(t) asymptotically by
the action of control law (17), where p∗(t) represents the target
configuration moving at velocity vc with a fixed geometric
pattern as defined in Definition 1.

Proof: Since δp = [0, δT
pf

]T and η̃ = [0, η̃T
f ]T , we have

δT
p

[
0 0

0 Idnf

]

= δT
p , η̃T

[
0 0

0 Idnf

]

= η̃T .

Consider the Lyapunov function

V = eT(g − g∗) +
1

2kI
η̃T η̃ ≥ 0. (21)

Note that V = 0 if and only if η̃ = 0 and eT(g − g∗) = 0 ⇔
g = g∗ according to (4). Since the target formation is assumed
to be unique, g = g∗ and p� = p∗� imply p = p∗. As a result,
V = 0 if and only if δp = 0 and η̃ = 0.

Since eT ġ =
∑m

k=1 eT
k ġk = 0 by (1), the derivative of V is

V̇ = eT ġ + (g − g∗)TH̄ṗ +
1
kI

η̃T ˙̃η

= −kp(g − g∗)TH̄

[
0 0

0 Idnf

]

H̄T(g − g∗)

+ (g − g∗)TH̄η − η̃T

[
0 0

0 Idnf

]

H̄T(g − g∗)

= −kp(g − g∗)TH̄

[
0 0

0 Idnf

]

H̄T(g − g∗)

+ (g − g∗)TH̄η − η̃TH̄T(g − g∗)

= −kp(g − g∗)TH̄

[
0 0

0 Idnf

]

H̄T(g − g∗) ≤ 0 (22)

where the last equality is due to H̄η̃ = H̄(η − 1n ⊗ vc) = H̄η.
Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g − g∗) and
‖η̃‖ are always bounded. By the lower bound of eT(g − g∗) in

(18), we know ‖δp ‖2

‖δp ‖+‖p̃∗‖ is also bounded from above. Suppose
the upper bound is α. Then

‖δp‖2

‖δp‖ + ‖p̃∗‖ ≤ α. (23)

Inequality (23) can be converted to a quadratic inequality of
‖δp‖, which further implies ‖δp‖ ∈ [0, ξ+], where ξ+ is the
positive root of the corresponding quadratic equality and ξ+ =
(α +

√
α2 + 4α‖p̃∗‖)/2. Hence, ‖δp‖ is always bounded. As a

result, there exists a compact set of δp and η̃ that is invariant un-
der the error dynamics. By the invariance principle [22, Th. 4.4],
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the error states converge to the set where V̇ = 0. When V̇ = 0, it
follows from (22) that [ 0

0
0

Id n f

]H̄T(g − g∗) = 0, which implies

δT
p

[
0 0

0 Idnf

]

H̄T(g − g∗)

= δT
p H̄T(g − g∗)

= (p − p∗)H̄T(g − g∗) = 0. (24)

Equation (24) implies that g = g∗ by Lemma 2 and consequently
δp = 0. �

As shown in the proof of Theorem 2, the proportional control
term in (17) converges to zero so that the geometric pattern is
achieved, and the integral term converges to vc so that each
follower could reach the common constant velocity.

Theorem 2 relies on the assumption of interagent collision
avoidance. We next give a sufficient condition on the position
and velocity of the initial formation to simultaneously guarantee
collision avoidance and system convergence. In this case, the
collision-free assumption could be dropped.

Corollary 3 (Collision avoidance for single-integrator for-
mation tracking): Under Assumption 1, there always exists a
sufficiently small positive constant α such that if the Lyapunov
function in (21) satisfies V (0) ≤ α, then ‖pi(t) − pj (t)‖ ≥ γ
for all i, j ∈ V and all t ≥ 0 and p(t) converges to p∗(t)
asymptotically.

Proof: With V defined in (21), inequality V ≤ α implies
eT(g − g∗) ≤ α. It then follows from (18) that

1
β

‖δp‖2

‖δp‖ + ‖p̃∗‖ ≤ α,

where β := 2λmin(Bf f )/‖H̄‖. Similar to (23), the above
inequality implies ‖δp‖ ∈ [0, ξ+], where ξ+ = (αβ +
√

α2β2 + 4αβ‖p̃∗‖)/2. It is obvious that there always exists a
sufficiently small α such that ξ+ ≤ ε, where ε is given in (15),
and consequently ‖δp‖ ≤ ξ+ ≤ ε.

At time t = 0, since V (0) ≤ α, we have ‖δp(0)‖ ∈ [0, ε].
Consequently, ‖pi(0) − pj (0)‖ ≥ γ for all i, j by (16) and hence
there is no interagent collision in the initial formation. Since
V̇ ≤ 0 in the absence of interagent collision according to (22),
‖δp(t)‖ will not escape from [0, ε]. Otherwise, there must exist
an escape time t1 such that V (t1) = α and V̇ (t1) > 0, which
is impossible. As a result, ‖δp(t)‖ ∈ [0, ε] for all t ≥ 0 and
hence collision avoidance is guaranteed. It then follows from
Theorem 2 that ‖δp(t)‖ converges to zero asymptotically. �

The integral control in (17) could also handle input distur-
bances as shown below.

Corollary 4 (Constant input disturbance): Under Assump-
tions 1 and 2, if ṗi = ui + ωi for i ∈ Vf where ωi ∈ Rd is
an unknown constant disturbance and ui is the right-hand side
of the control law in (17), then p(t) convergence to p∗(t) asymp-
totically.

Proof: Denote ωf ∈ Rdnf as the vector collecting all ωi

for i ∈ Vf and ω = [0, ωT
f ]T ∈ Rdn . The formation dynamics

Fig. 2. Geometric relationship between ġij and ėij .

become

ṗ = −kp

[
0 0

0 Idnf

]

H̄(g − g∗) + η + ω

η̇ = −kI

[
0 0

0 Idnf

]

H̄(g − g∗).

Define the error states as δp = p − p∗ and η̃ = η + ω −
1n ⊗ vc . Choose the Lyapunov function V = eT(g − g∗) +
η̃T η̃/(2kI). Similar to (22), it can be shown that

V̇ = −kp(g − g∗)TH̄

[
0 0

0 Idnf

]

H̄T(g − g∗) ≤ 0.

The rest proof is the same as that of Theorem 2. �
As shown in Corollary 4, the integral term ηi in the control

law eventually converges to vc − ωi . As a result, the unknown
disturbance is compensated by the integral term.

IV. BEARING-ONLY FORMATION TRACKING CONTROL:
DOUBLE-INTEGRATOR AGENTS

This section studies the case where each agent can be modeled
as a double integrator: ṗi(t) = vi(t), v̇i(t) = ui(t), where ui(t)
is the acceleration input to be designed. The leaders move at a
common constant velocity vc . For follower i ∈ Vf , our proposed
bearing-only control law is

ṗi(t) = vi(t)

v̇i(t) = kp

∑

j∈Ni

(
gij (t) − g∗ij

)
+ kv

∑

j∈Ni

ġij (t) (25)

where kp and kv are positive constant control gains. Control law
(25) requires two types of measurements: The first is relative
bearings {gij (t)}j∈Ni

and the second is the varying rate of the
bearings {ġij (t)}j∈Ni

.
The geometric interpretation of ġij is illustrated in Fig. 2.

The varying rate ġij carries certain information of the relative
velocity ėij , which is why ġij is useful for controlling double
integrators. However, ėij could not be fully recovered from
ġij . That is because the velocity magnitude and the velocity
component along the direction of gij are both missing in ġij . As
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a result, an infinite number of ėij could correspond to the same
value of ġij .

In practice, if gij can be measured, the value of ġij can also be
measured easily. For example, if an agent uses onboard vision
to measure relative bearings, the velocity of a target moving in
the image can be obtained by techniques such as optical flow.
The value of ġij can be then calculated from optical flow based
on the pin-hole camera model [23].

In order to prove the formation stability, rewrite control law
(25) in a matrix form as

ṗ = v

v̇ = −kp

[
0 0

0 Idnf

]

H̄T(g − g∗) − kv

[
0 0

0 Idnf

]

H̄T ġ.

(26)

The initial values satisfy

p(0) =

[
p∗�(0)

pf (0)

]

, v(0) =

[
1dn�

⊗ vc

vf (0)

]

where pf (0) and vf (0) could be arbitrary. Define the error states
as

δp = p − p∗, δv = v − 1n ⊗ vc .

The objective is to prove that δp → 0 and δv → 0 as t → ∞.
Theorem 3 (Double-integrator formation tracking): Under

Assumptions 1 and 2, p(t) converges to p∗(t) asymptotically by
the action of control law (25), where p∗(t) represents the target
configuration moving at velocity vc with a fixed geometric
pattern as defined in Definition 1.

Proof: Since δp = [0, δT
pf

]T and δv = [0, δT
vf

]T , we have

δT
p

[
0 0

0 Idnf

]

= δT
p , δT

v

[
0 0

0 Idnf

]

= δT
v .

Consider the Lyapunov function

V = kpe
T(g − g∗) +

1
2
δT
v δv ≥ 0.

Similar to the Lyapunov function in (21), it can be shown that
V = 0 if and only if p = p∗ and δv = 0. Note that H̄δv = H̄v
since H̄(1n ⊗ vc) = 0. Then, the derivative of V is

V̇ = kp(g − g∗)TH̄ṗ + δT
v δ̇v

= kp(g − g∗)TH̄v − kpδ
T
v

[
0 0

0 Idnf

]

H̄T(g − g∗)

− kv δT
v

[
0 0

0 Idnf

]

H̄T ġ

= kp(g − g∗)TH̄v − kpδ
T
v H̄T(g − g∗) − kv δT

v H̄T ġ

= kp(g − g∗)TH̄v − kpv
TH̄T(g − g∗) − kvvTH̄T ġ

= −kvvTH̄T ġ. (27)

Since H̄p = e, we have H̄v = H̄ṗ = ė. As a result, (27) implies

V̇ = −kv ėT ġ = −kv

m∑

k=1

ėT
k ġk = −kv

m∑

k=1

ėT
k

Pgk

‖ek‖ ėk ≤ 0

where the last equality is due to (1).
Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g − g∗)

and ‖δv‖ are always bounded. By the lower bound of eT(g − g∗)
in Lemma 2, ‖δp‖ is also bounded. As a result, there exists a com-
pact set of δp and δv that is invariant under the error dynamics. By
the invariance principle [22, Th. 4.4], the error states converge
to the set where V̇ = 0. When V̇ = 0, Pgk

ėk = 0 ⇒ ġk = 0
and hence g is invariant. Case 1: if g is invariant and g = g∗,
then the theorem is proved. Case 2: if g is invariant but g 	= g∗,
the right-hand side of (26) is constant and nonzero [otherwise,
ġ = 0 implies g = g∗ as shown in (24)]. Consequently, ‖v‖ will
eventually increase to infinity and so does ‖δv‖ = ‖v − vc‖,
which contradicts the fact that ‖δv‖ is bounded. �

The following is a sufficient condition to simultaneously guar-
antee collision avoidance and formation convergence. With this
condition, Assumption 2 could be dropped.

Corollary 5 (Double-integrator collision avoidance): Under
Assumption 1, there always exists a sufficiently small positive
constant α such that if V (0) ≤ α, then ‖pi(t) − pj (t)‖ ≥ γ for
all i, j ∈ V and all t ≥ 0 and p(t) converges to p∗(t) asymptot-
ically.

Proof: The proof of Corollary 5 is similar to Corollary 3 and
hence omitted here. �

V. BEARING-ONLY FORMATION TRACKING CONTROL:
UNICYCLE AGENTS

This section studies bearing-only formation control of uni-
cycle agents. Let pi = [xi, yi ]T ∈ R2 and θi ∈ R be the center
coordinate and heading angle of agent i, respectively. The mo-
tion of agent i is governed by the unicycle model

ẋi = vi cos θi ẏi = vi sin θi θ̇i = wi (28)

where vi ∈ R and wi ∈ R are the linear and angular velocities
to be designed. Denote hi = [cos θi, sin θi ]T ∈ R2 and h⊥

i =
[− sin θi, cos θi ]T ∈ R2 . Then, the unicycle model (28) can be
rewritten as

ṗi = vihi ḣi = wih
⊥
i . (29)

We only consider unicycle agents moving in the plane in this
paper, though model (29) could also characterize nonholonomic
agents moving in three dimensions [24].

The first part of this section considers moving target for-
mations of unicycles. The second part studies stationary target
formations while the unicycle model is subject to certain motion
constraints. In either part, the heading angles of the unicycles
are not required to form any desired patterns and hence relative
heading angles are not required to be measured.

A. Tracking Moving Target Formations

There are two conventional yet simple approaches to handle
the unicycle model. The first is to convert the unicycle model
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to a single-integrator model by feedback linearization [25,
Sec. V. A]. Then, the control law designed for single integrators
in (17) could be applied. This approach is an approximation
because it aims to control the motion of some offset points on
the unicycles instead of their center points, whereas the bearing
measurements are with respect to the center points. When the
offset points are selected to be closer to the center points, the
approximation would be more accurate, but the magnitude of
the resultant control input may also be larger. The second ap-
proach is to convert the unicycle model to a double-integrator
model by feedback linearization [26, Sec. 3]. Then, the control
law designed for double integrators in (25) could be applied.
The limitation of this approach is that the feedback linearization
relies on an assumption that the velocity of each unicycle is
never zero, which may not be guaranteed.

We propose an alternative control law based on the rigorous
unicycle model. For leader i ∈ V� , it holds that vi = vc , wi = 0,
and θi is aligned with vc . For follower i ∈ Vf , the proposed
control law is

vi = hT
i

⎡

⎣kp

∑

j∈Ni

(gij − g∗ij ) + vc

⎤

⎦ ,

wi = (h⊥
i )T

⎡

⎣kh

∑

j∈Ni

(gij − g∗ij ) + vc

⎤

⎦ , (30)

where kp and kh are two constant positive control gains. The
design of this control law is inspired by [27]. One limitation of
this control law is that it requires the information of vc , which is
only known by the leaders. Each follower could estimate vc by
distributed consensus protocols [28], [29]. However, distributed
consensus requires wireless communication among the agents.
As a comparison, the previous control laws proposed in this
paper do not require wireless communication.

The formation stability under control law (30) is analyzed as
follows. The following analysis does not involve the estimation
of vc . If vc could be estimated by each follower within finite
time by, for example, finite-time consensus protocols [30], [31],
the following stability analysis still applies immediately.

For leader i ∈ Vi , we have ṗi = vc and ḣi = 0. For follower
i, substituting control law (30) into (29) gives

ṗi = hih
T
i

⎡

⎣kp

∑

j∈Ni

(gij − g∗ij ) + vc

⎤

⎦

ḣi = h⊥
i (h⊥

i )T

⎡

⎣kh

∑

j∈Ni

(gij − g∗ij ) + vc

⎤

⎦ . (31)

The formation stability is analyzed in the following result.
Theorem 4 (Unicycle formation tracking): Under Assump-

tions 1 and 2, p(t) converges to p∗(t) asymptotically by the
action of control law (31), where p∗(t) represents the target
configuration moving at velocity vc with a fixed geometric pat-
tern as defined in Definition 1.

Proof: The matrix-vector form of the formation dynamics
implied by (31) is

ṗ = −
[

0dn�
0

0 Dhi hT
i

]

kpH̄
T(g − g∗)

+

[
Idn�

0

0 Dhi hT
i

]

(1n ⊗ vc),

ḣ = −
[

0dn�
0

0 Dh⊥
i (h⊥

i )T

]

khH̄T(g − g∗)

+

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

(1n ⊗ vc) (32)

where Dhi hT
i

= blkdiag(. . . , hih
T
i , . . . ) ∈ Rdnf ×dnf and

Dh⊥
i (h⊥

i )T = blkdiag(. . . , h⊥
i (h⊥

i )T , . . . ) ∈ Rdnf ×dnf where

i ∈ Vf . The initial value of p satisfies p(0) = [p∗�(0)T , pf (0)T ]T

where pf (0) could be arbitrary. The initial heading hi(0) of
leader i ∈ V� should be consistent with vc : if vc 	= 0 then hi(0)
should be parallel with vc ; otherwise, if vc = 0 then hi(0)
could be arbitrary. The initial heading of a follower could be
arbitrary.

Consider the Lyapunov function

V = eT(g − g∗) +
1

2kh
‖h − 1n ⊗ vc‖2 ≥ 0. (33)

The global minimum value of V is n(1 − ‖vc‖)2/(2kh). If
‖vc‖ = 0, this value is reached when δp = 0 and hi is ar-
bitrary. If ‖vc‖ 	= 0, this value is reached when δp = 0 and
hi = vc/‖vc‖ for all i. The derivative of V along the system
trajectory is

V̇ = (g − g∗)TH̄ṗ +
1
kh

(h − 1n ⊗ vc)T ḣ

= −(g − g∗)TH̄

[
0dn�

0

0 Dhi hT
i

]

kpH̄
T(g − g∗)

+ (g − g∗)TH̄

[
Idn�

0

0 Dhi hT
i

]

(1n ⊗ vc)

− (h − 1n ⊗ vc)T

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

H̄T(g − g∗)

+
1
kh

(h − 1n ⊗ vc)T

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

1n ⊗ vc

= −kp(g − g∗)TH̄

[
0dn�

0

0 Dhi hT
i

]

H̄T(g − g∗)

+ (g − g∗)TH̄

[
Idn�

0

0 Dhi hT
i

]

(1n ⊗ vc)
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+ (1n ⊗ vc)T

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

H̄T(g − g∗)

− 1
kh

(1n ⊗ vc)T

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

(1n ⊗ vc) (34)

where the last equality is due to hT
i (h⊥

i (h⊥
i )T) = 0. Since

hih
T
i + h⊥

i (h⊥
i )T = Id , the sum of the second and third items

in (34) is (g − g∗)TH̄(1 ⊗ vc) which equals zero. As a result,

V̇ = −kp(g − g∗)TH̄

[
0dn�

0

0 Dhi hT
i

]

H̄T(g − g∗)

− 1
kh

(1n ⊗ vc)T

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

(1n ⊗ vc) ≤ 0.

Since V̇ ≤ 0, V (t) ≤ V (0) for all t. As a result, eT(g − g∗) is
always bounded. By the lower bound of eT(g − g∗) in Lemma 2,
‖δp‖ is also always bounded. As a result, there exists a compact
set of δp and hi − vc that is invariant under the dynamics. By
the invariance principle [22, Th. 4.4], the states converge to the
set where V̇ = 0. It follows from V̇ = 0 that

[
0dn�

0

0 Dhi hT
i

]

H̄T(g − g∗) = 0 (35)

[
0dn�

0

0 Dh⊥
i (h⊥

i )T

]

(1n ⊗ vc) = 0. (36)

Since hih
T
i + h⊥

i (h⊥
i )T = Id , substituting (35) and (36) into

(32) gives

ṗ = 1n ⊗ vc (37)

ḣ = −kh

[
0dn�

0

0 Idnf

]

H̄T(g − g∗). (38)

Equation (37) indicates that all the agents move at the same
common velocity vc . As a result, the relative positions of the
agents are time-invariant and consequently H̄(g − g∗) is con-
stant. Assume that ḣ in (38) is nonzero. Then, for certain i ∈ Vf ,
hi is time-varying, which is impossible to have (35). As a result,
ḣ = 0 and it follows from (24) that g = g∗. �

According to the proof of Theorem 4, if the leader velocity
vc is nonzero, then the heading of every agent would become
aligned with vc eventually; otherwise, the heading is unspecified
in the final formation.

B. Formation Stabilization Subject to Constraints

We next present a bearing-only formation control law to han-
dle unicycles subject to velocity saturation and certain path
constraints. This control law is applicable to stationary target
formations and it will be our future work to study tracking mov-
ing formations subject constraints.

Suppose vi and wi are constrained by

−vb
i ≤ vi ≤ vf

i , −wr
i ≤ wi ≤ wl

i ,

where vf
i , v

b
i > 0 are the maximum forward and backward linear

speeds, respectively. The constants wr
i ,w

l
i > 0 are the maximum

left-turn and right-turn angular speeds, respectively. Here vi > 0
means the agent moves forward, and vi < 0 backward; and
wi > 0 means the agent turns its heading vector to the left (i.e.,
counterclockwise), and wi < 0 to the right (i.e., clockwise).
Define the saturation functions for the linear and angular speeds
for agent i as

satvi
(x) =

⎧
⎪⎨

⎪⎩

−vb
i , x ∈ (−∞,−vb

i )

x, x ∈ [−vb
i , vf

i ]

vf
i , x ∈ (vf

i ,+∞)

satwi
(x) =

⎧
⎪⎨

⎪⎩

−wr
i , x ∈ (−∞,−wr

i )

x, x ∈ [ − wr
i ,w

l
i ]

wl
i , x ∈ (wl

i ,+∞).

The saturation bounds vf
i , v

b
i ,wr

i ,w
l
i may vary for different

agents.
The proposed bearing-only formation control law for unicycle

i ∈ Vf is

vi = satvi

{
αi(t)hT

i fi

}

wi = satwi

{
(h⊥

i )Thd
i (t)

}
(39)

where

fi =
∑

j∈Ni

(gij − g∗ij ). (40)

The time-varying quantities αi(t) and hd
i (t) provide additional

freedom to control agent i. More specifically, αi(t) is a time-
varying positive scalar. It can be designed to adjust the linear
velocity magnitude so as to slow down or speed up each agent if
needed. The vector hd

i (t) ∈ R2 represents the desired heading
vector for unicycle i. The angular speed control in (39) aims to
turn hi to align with hd

i . As a result, hd
i can be designed to adjust

the heading of agent i so as to satisfy certain motion constraints
such as avoiding obstacles. When there are no obstacles or path
constraints, it can be simply chosen as hd

i = fi .
The stability analysis of the control law is given below.
Theorem 5 (Unicycle formation subject to constraints): Un-

der Assumptions 1 and 2, control law (39) drives p(t) to p∗

asymptotically, where p∗ is the stationary target configuration,
if the variables αi(t) and hd

i (t) satisfy the following conditions:
1) αi(t) is uniformly continuous in t and bounded as 0 <

αmin ≤ αi(t) ≤ αmax ;
2) 0 ≤ φi(t) ≤ φmax < π/2 where φi(t) is the angle be-

tween hd
i (t) and fi ;

3) ‖hd
i (t)‖ = 0 if and only if ‖fi‖ = 0.

Proof: The stability analysis is similar to [32, Th. 3–4]. We
merely outline the important steps in the stability analysis as
below. Substituting control law (39) into the unicycle model in
(29) gives

ṗi = hisatvi
(αih

T
i fi)

ḣi = h⊥
i satwi

((h⊥
i )Thd

i ), i ∈ Vf . (41)
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Fig. 3. Simulation results of control law (17) designed for single-integrator agents. (a) The leaders are stationary and the integral control is not
used. (b) The leaders move at a constant common velocity and the integral control is not used. (c) The leaders are moving and the integral control
is used. The hollow markers represent the initial positions of the agents. The bearing error is

∑
(i ,j )∈E ‖gij − g∗ij ‖.

First of all, rewrite the saturation function as satvi
(αih

T
i fi) =

κiαih
T
i fi , where

κi =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vb
i

−αihT
i fi

, αih
T
i fi ∈ (−∞,−vb

i )

1, αih
T
i fi ∈ [ − vb

i , vf
i ]

vf
i

αihT
i fi

, αih
T
i fi ∈ (vf

i ,+∞).

(42)

With the notation of κi , the control law in (41) can be rewritten
as ṗi = κiαihih

T
i fi . Then, the matrix-vector form of the control

law is

ṗ =

[
ṗ�

ṗf

]

= −
[

0 0

0 D

]

H̄T(g − g∗)

where D= blkdiag(κn� +1αn� +1hn� +1h
T
n� +1 , . . . , κnαnhnhT

n)
is a (dnf ) × (dnf ) positive semidefinite block diagonal matrix.

Consider the Lyapunov function V = eT(g − g∗). Since
eT ġ = 0, the time derivative of V is

V̇ = (g − g∗)T ė = (g − g∗)TH̄ṗ

= −(g − g∗)TH̄

[
0 0

0 D

]

H̄T(g − g∗)

= −
∑

i∈Vf

κiαif
T
i hih

T
i fi ≤ 0.

Since V is nonincreasing and bounded from below, V converges
as t → ∞. The next step is to prove that V̇ is uniformly continu-
ous in t by showing that hi , fi , and κi are uniformly continuous
in t. The rest of the proof is similar to [32, Th. 3–4] and omitted
here. �

The conditions on αi(t) and hd
i (t) in Theorem 5 are mild. In

particular, αi may vary within a wide interval. The heading of

hd
i can vary freely as long as the angle between hd

i and fi is less
than π/2. Note that hd

i is not required to be continuous. These
mild conditions provide more freedom for the agents to ful-
fil motion constraints without jeopardizing formation stability.
Experimental results will be given later to demonstrate how to
properly design hd

i to satisfy motion constraints such as obstacle
avoidance.

VI. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation for Single-Integrator Agents

Fig. 3 shows simulation examples to demonstrate control law
(17) designed for single-integrator agents. The target formation
is a square with two leaders as shown in Fig. 1(b).

Three relevant simulation scenarios are studied. In the first
scenario, the leaders are stationary. As shown in Fig. 3(a), con-
trol law (17) is able to steer the agents to the target formation
without the integral control term (i.e., kI = 0). In the second
scenario, the leaders move at a common nonzero constant ve-
locity. In this case, without the integral control term, control law
(17) is not able to track the moving target formation as shown in
Fig. 3(b), and the position-tracking errors diverge to infinity. In
the third scenario, with the integral control term, the control law
can successfully track the moving target formation as shown in
Fig. 3(c). The control gains are selected as kp = 5 and kI = 0.3.
It is observed in the simulation that large kp could accelerate
formation convergence, but also leads to large velocity input.
Large kI could accelerate formation convergence, but may also
lead to trajectory oscillation.

B. Simulation for Double-Integrator Agents

Fig. 4 shows a simulation example to demonstrate control
law (25) designed for double-integrator agents. The target for-
mation is the three-dimensional (3-D) cube with two leaders as
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Fig. 4. Simulation results for control law (25) designed for double-
integrator agents. The hollow markers represent the initial positions of
the agents. The bearing error is

∑
(i ,j )∈E ‖gij − g∗ij ‖.

shown in Fig. 1(c). The two leaders move at a common nonzero
constant velocity. As can be seen, the formation configuration
converges to the desired one and the velocity of each follower
also converges to the leaders’ velocity. In the simulation, the
control gains are selected as kp = 5 and kv = 15. According to
the simulation, it is observed that too small kv or too large kp

could lead to trajectory oscillation.

C. Simulation for Unicycles

Fig. 5 shows a simulation example to demonstrate control
law (30) designed for unicycle agents. The target formation is a
square with two leaders as shown in Fig. 1(b). The two leaders
move at a constant velocity vc = [

√
2/2,

√
2/2]T . As can be

seen, the formation configuration converges to the desired one,

Fig. 5. Simulation results to demonstrate control law (30) designed for
unicycle agents.

the velocity of each follower converges to vc , and the heading
of each follower becomes aligned with vc eventually. In the
simulation, the control gains are selected as kp = kh = 1.5.
According to the simulation, it is observed that large kp and kh

would accelerate convergence, but may lead to large velocity
input value.

D. Experiment for Unicycles

Control law (39) has been implemented and verified on real
unicycle robots. The unicycle robots used in the experiment are
shown in Fig. 6(a). Each robot has two wheels. The pattern on
the top of each robot is used to localize the robot by a vision
system. The location of each robot is estimated in a central
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Fig. 6. Experimental results of control law (39) designed for unicycle
robots subject to motion constraints. (a) Unicycle robots used in the
experiments. (b) Target formation in the experiment. Agent 1 and 2 are
leaders. The rest are followers. (c) Trajectories and final formation plotted
against an image taken by the downward-looking camera on the ceiling.
Hollow dots represent the initial positions of the robots. (d) Total bearing
error

∑
(i ,j )∈E ‖gij − g∗ij ‖. (e) Linear and angular velocities.

computer and then transmitted to each agent via Bluetooth. The
control law is executed on each robot in a distributed manner.

In this experiment, the target formation of the six robots is
given in Fig. 6(b). As shown in Fig. 6(c)–(e), the target formation
is successfully achieved in the presence of an forbidden area.
The coordinate of the center of the forbidden area is (0.6, 0.85) m
and its radius is 0.1 m.

The obstacle-avoidance strategy used in the experiment is
descried as below. When fi in (40) does not point into the
forbidden area, hd

i is chosen as fi . When fi points into the
forbidden area, the obstacle- avoidance mechanism is triggered
and hd

i is chosen as a unit vector pointing to the leftmost point
of the forbidden area. As a result, the unicycle could pass by
the left-hand side of the forbidden area as shown in Fig. 6(c).
Of course, hd

i could also be chosen to point into any other
direction that does not pass through the forbidden area. In the
experiment, there is merely one single round forbidden area. In
this simple scenario, it is always possible to properly select hd

i so
that condition 2) in Theorem 5 is satisfied and hence formation
stability is guaranteed. However, in some complicated scenarios
with multiple and irregular obstacles, it may be impossible to
find hd

i to satisfy condition 2) to avoid all the obstacles.
It is worth mentioning that the formation task was success-

fully achieved in the presence of many practical problems in the
experiment. First, since each unicycle has merely two wheels,
the front bottom end or the rear bottom end of the robot always
contacts the ground floor, which causes strong frictional distur-
bances. Second, the low-level velocity control for each robot is
an open loop control, which is not able to track velocity refer-
ences accurately. Third, there is a significant time delay caused
by vision processing and data transmission via Bluetooth.

VII. CONCLUSION

This paper proposed novel bearing-only control laws to han-
dle moving target formations and a variety of agent models
including single integrators, double integrators, and unicycles.
The proposed control laws are an important step towards the
application of bearing-only formation control in practical tasks.
In the future, this study may be generalized in several direc-
tions. First, more complicated agent dynamics, such as general
linear systems [33] and directed sensing graphs [16] could be
studied. Second, the bearing vectors considered in this study are
expressed in a common reference frame. It is important to study
how to achieve formation control using locally measured bear-
ings. Third, more sophisticated collision avoidance strategies,
such as reciprocal velocity obstacle [34] could be employed to
achieve avoidance of dynamical obstacles.
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