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Translational and Scaling Formation Maneuver
Control via a Bearing-Based Approach

Shiyu Zhao and Daniel Zelazo, Member, IEEE

Abstract—This paper studies distributed maneuver control of
multiagent formations in arbitrary dimensions. The objective is to
control the translation and scale of the formation while maintain-
ing the desired formation pattern. Unlike conventional approaches
where the target formation is defined by relative positions or
distances, we propose a novel bearing-based approach where the
target formation is defined by inter-neighbor bearings. Since the
bearings are invariant to the translation and scale of the formation,
the bearing-based approach provides a simple solution to the
problem of translational and scaling formation maneuver control.
Linear formation control laws for double-integrator dynamics
are proposed and the global formation stability is analyzed. This
paper also studies bearing-based formation control in the presence
of practical problems, including input disturbances, acceleration
saturation, and collision avoidance. The theoretical results are
illustrated with numerical simulations.

Index Terms—Bearing rigidity, formation scale control, forma-
tion tracking control, input saturation, multiagent systems.

I. INTRODUCTION

EXISTING approaches to multiagent formation control can
be categorized by how the desired geometric pattern of the

target formation is defined. In two popular approaches, the tar-
get formation is defined by inter-neighbor relative positions or
distances (see [1] for an overview). It is notable that the invari-
ance of the constraints of the target formation has an important
impact on the formation maneuverability. For example, since
the relative-position constraints are invariant to the translation
of the formation, the relative-position-based approach can be
applied to realize translational formation maneuvers (see, for
example, [2]). Since distance constraints are invariant to both
translation and rotation of the formation, the distance-based
approach can be applied to realize translational and rotational
formation maneuvers (see, for example, [3]).

In addition to the aforementioned two approaches, there has
been a growing research interest in a bearing-based formation
control approach in recent years [4]–[7]. In the bearing-based
approach, the geometric pattern of the target formation is

Manuscript received June 17, 2015; revised October 3, 2015 and
November 30, 2015; accepted December 6, 2015. Date of publication
December 11, 2015; date of current version September 15, 2017. This work
was supported by the Israel Science Foundation under Grant 1490/13. Recom-
mended by Associate Editor D. A. Paley.

S. Zhao is with the Department of Mechanical Engineering, University of
California, Riverside, CA 92521 USA (e-mail: shiyuzhao@engr.ucr.edu).

D. Zelazo is with the Faculty of Aerospace Engineering,Technion-Israel
Institute of Technology, Haifa 32000, Israel (e-mail: dzelazo@technion.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2015.2507547

defined by inter-neighbor bearings. Since the bearings are in-
variant to the translation and scale of the formation, the bearing-
based approach provides a simple solution to the problem
of translational and scaling formation maneuver control. The
translational maneuvers refer to when the agents move at a com-
mon velocity such that the formation translates as a rigid body.
Scaling maneuvers refer to when the formation scale, which is
defined as the average distance from the agents to the formation
centroid, varies while the geometric pattern of the formation
is preserved. It is worth mentioning that the bearing-based
formation control studied in this paper requires relative-position
or velocity measurements, which differs from the bearing-only
formation control problem where the feedback control relies
only on bearing measurements [8]–[16]. Moreover, bearing-
based formation control is a linear control problem whereas
bearing-only formation control is nonlinear.

Formation scale control is a useful technique in practical
formation control tasks. By adjusting the scale of a formation,
a team of agents can dynamically respond to their surrounding
environment to, for example, avoid obstacles. The problem of
formation scale control has been studied by the relative-position
and distance-based approaches in [17] and [18]. However,
since neither the relative positions nor distances are invariant to
the formation scale, these two approaches result in complicated
estimation and control schemes in which follower agents must
estimate the desired formation scale known only by leader
agents. Moreover, the two approaches are so far only applicable
in the case where the desired formation scale is constant. Very
recently, the work [19] proposed a formation control approach
based on the complex Laplacian matrix. In this approach,
the target formation is defined by complex linear constraints
that are invariant to the translation, rotation, and scale of the
formation. As a result, this approach provides a simple solution
to formation scale control. However, as shown in [19], the
approach is only applicable to formation control in the plane;
it is unclear if it can be extended to higher dimensions.

Although the bearing-based approach provides a simple solu-
tion to formation scale control, the existing studies on bearing-
based formation control focus mainly on the case of static
target formations. The case where the translation and scale of
the target formation are time-varying has not yet been studied.
Moreover, a fundamental problem, which has not been solved
in the existing literature, is when the target formation can be
uniquely determined by the inter-neighbor bearings and leaders
in arbitrary dimensional spaces. The analysis of this fundamen-
tal problem requires the bearing rigidity theory proposed in [16]
and was addressed in our recent work in [20]. Our previous
work [21] considered a single-integrator dynamic model of
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the agents and proposed a proportional-integral bearing-based
formation maneuver control law.

The contributions of this paper are summarized as below.
First, we study the problem when a target formation can be
uniquely determined by inter-neighbor bearings and leader
agents. The necessary and sufficient condition for the unique-
ness of the target formation is analyzed based on a special
matrix we call the bearing Laplacian, which characterizes the
interconnection topology and the inter-neighbor bearings of
the formation. Second, we propose two linear bearing-based
formation control laws for double-integrator dynamics. With
these two control laws, the formation can track constant or
time-varying leader velocities. In the proposed control laws,
the desired translational and scaling maneuver is only known
to the leaders and the followers are not required to estimate
it. A global formation stability analysis is presented for each
of the control laws. Third, we study bearing-based formation
control in the presence of some practical issues. In particular,
control laws that can handle constant input disturbances and
acceleration saturation are proposed and their global stability is
analyzed. Sufficient conditions that ensure no collision between
any two agents are also proposed. Finally, it is noteworthy that
the results presented in this paper are applicable to formation
control in arbitrary dimensions.

The organization of this paper is as follows. Section II
presents the problem formulation. Section III proposes and
analyzes two linear bearing-based formation control laws.
Section IV considers bearing-based formation control in the
presence of practical issues, such as input disturbances and
acceleration saturation. Conclusions are drawn in Section V.

II. FORMATION MANEUVER CONTROL PROBLEM AND

BEARING-CONSTRAINED TARGET FORMATIONS

Consider a formation of n agents in R
d (n ≥ 2, d ≥ 2). Let

V Δ
= {1, . . . , n}. Denote pi(t) ∈ R

d and vi(t) ∈ R
d as the posi-

tion and velocity of agent i ∈ V . Let the first n� agents be called
the leaders and the remaining nf agents the followers (n� +
nf = n). Let V� = {1, . . . , n�} and Vf = {n� + 1, . . . , n} be
the index sets of the leaders and followers, respectively. The
motion (i.e., position and velocity) of each leader is given
a priori, and we assume the velocity of each leader is piecewise
continuously differentiable. Each follower is modeled as a
double-integrator

ṗi(t) = vi(t), v̇i(t) = ui(t), i ∈ Vf

where ui(t) ∈ R
d is the acceleration input to be de-

signed. Let p� = [pT1 , . . . , p
T
n�
]
T

, pf = [pTn�+1, . . . , p
T
n ]

T
, v� =

[vT1 , . . . , v
T
n�
]
T

, and vf = [vTn�+1, . . . , v
T
n ]

T
. Let p = [pT� , p

T
f ]

T

and v = [vT� , v
T
f ]

T
.

The underlying information flow among the agents is de-
scribed by a fixed graph G = (V , E) where E ⊂ V × V is the
edge set. By mapping the point pi to the vertex i, we denote
the formation as G(p). If (i, j) ∈ E , agent i can access the in-
formation of agent j. The set of neighbors of agent i is denoted

as Ni
Δ
= {j ∈ V : (i, j) ∈ E}. We assume that the information

flow between any two followers is bidirectional. The bearing of
agent j relative to agent i is described by the unit vector

gij
Δ
=

pj − pi
‖pj − pi‖

.

Note gji = −gij . For gij , define

Pgij
Δ
= Id − gijg

T
ij

where Id ∈ R
d×d is the identity matrix. Note that Pgij is an

orthogonal projection matrix that geometrically projects any
vector onto the orthogonal compliment of Pgij . It can be ver-
ified that Pgij is positive semidefinite and satisfies PT

gij
= Pgij ,

P 2
gij

= Pgij , and Null(Pgij ) = span{gij}.

A. Bearing-Based Formation Maneuver Control

Suppose the real bearings of the formation at time t > 0
are {gij(t)}(i,j)∈E , and the desired constant bearings are
{g∗ij}(i,j)∈E . The bearing-based formation control problem is
formally stated below.

Problem 1 (Bearing-Based Formation Maneuver Control):
Consider a formationG(p(t)) where the (time-varying) position
and velocity of the leaders {pi(t)}i∈V�

and {vi(t)}i∈V�
are

given. Design the acceleration control input ui(t) for each fol-
lower i ∈ Vf based on the relative position {pi(t)− pj(t)}j∈Ni

and the relative velocity {vi(t)− vj(t)}j∈Ni
such that gij(t) →

g∗ij for all (i, j) ∈ E as t → ∞.
Problem 1 can be equivalently stated as a problem where

the formation is required to converge to a bearing-constrained
target formation as defined below.

Definition 1 (Target Formation): The target formation de-
noted by G(p∗(t)) is a formation that satisfies the following
constraints for all t ≥ 0:

a) Bearing (p∗j(t)−p∗i(t))/‖p∗j(t)−p∗i(t)‖=g∗ij , ∀(i, j) ∈ E ;
b) Leader p∗i(t) = pi(t), ∀i ∈ V�.

The target formation G(p∗(t)) is constrained jointly by the
bearing constraints and the leader positions. The bearing con-
straints are constant, but the leader positions may be time-
varying. Given appropriate motion of the leaders, the target
formation has the desired translational and scaling maneuver
and desired inter-neighbor bearings. If the real formation p(t)
converges to the target formation p∗(t), the desired forma-
tion maneuver and formation pattern can be simultaneously
achieved. Motivated by this idea, define the position and ve-
locity errors for the followers as

δp(t) = pf (t)− p∗f (t), δv(t) = vf (t)− v∗f (t) (1)

where p∗f (t) and v∗f (t) are the position and velocity of the
followers in the target formation. The control objective is to
design control laws for the followers to drive δp(t) → 0 and
δv(t) → 0 as t → ∞ (see Fig. 1 for an illustration). Note
δ̇p(t) = δv(t).

A fundamental problem regarding the target formation,
which is still unexplored so far, is whether p∗(t) exists and is
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Fig. 1. Illustration of the bearing-constrained target formation. Solid dots:
leaders; hollow dots: followers. Figure (a) shows the target formation p∗ and
the real formation p. Figure (b) shows two target formations that have the same
bearings but different translations and scales.

unique. If p∗(t) is not unique, there exist multiple formations
satisfying the bearing constraints and leader positions and,
consequently, the formation may not be able to converge to
the desired geometric pattern. This fundamental problem is
analyzed in the following subsection.

B. Properties of the Target Formation

This subsection explores the properties of the target forma-
tion that will be used throughout this paper.

1) Bearing Laplacian Matrix: Define a matrix B(G(p∗)) ∈
R

dn×dn with the ijth block as

[B (G(p∗))]ij =

⎧⎪⎨
⎪⎩
0d×d, i 
= j, (i, j) 
∈ E
−Pg∗

ij
, i 
= j, (i, j) ∈ E∑

k∈Ni
Pg∗

ik
, i = j, i ∈ V .

The matrix B(G(p∗)), which we write in short as B in the
sequel, can be viewed as a matrix-weighted graph Laplacian
matrix, where the matrix weight for each edge is a positive
semidefinite orthogonal projection matrix. We call B the bear-
ing Laplacian since it characterizes the interconnection topol-
ogy and the bearings of the formation. The bearing Laplacian
matrix naturally emerges and plays important roles in bearing-
based formation control and network localization problems [6],
[20], [21].

We now state an important property of the bearing Laplacian.
In the sequel, 1n ∈ R

n is the vector with all entries equal to
one, and ⊗ denotes the Kronecker matrix product.

Lemma 1: For any G(p∗), the bearing Laplacian always
satisfies

Null(B) ⊇ span{1n ⊗ Id, p
∗}. (2)

Proof: For any x = [xT
1 , . . . , x

T
n ]

T ∈ R
dn, we have

Bx =

⎡
⎢⎢⎣

...∑
j∈Ni

Pg∗
ij
(xi − xj)

...

⎤
⎥⎥⎦ . (3)

First, if x ∈ span{1n ⊗ Id}, then xi = xj for all i, j ∈ V . It
then follows from (3) that Bx = 0. Second, if x ∈ span{p∗},
then xi = kp∗i for all i ∈ V where k ∈ R. It then follows from
Pg∗

ij
(p∗i − p∗j) = 0 that Bx = 0. To summarize, any vector in

span{1n ⊗ Id, p
∗} is also in Null(B). �

Remark 1: In fact, any vector in the null space of B
corresponds to a motion of the formation that preserves all of

Fig. 2. Examples of nonunique and unique target formations. Solid dots:
leaders; hollow dots: followers. The formation in (c) is 3-D. (a) Non-unique.
(b) Unique. (c) Unique.

the bearings [20]. As a result, the expression in (2) indicates
that the bearings are invariant to the translational and scaling
motion of the formation. Specifically, 1n ⊗ Id corresponds to
the translational motion and p∗ − 1n ⊗ (

∑n
i=1 p

∗
i/n) corre-

sponds to the scaling motion. In addition, the bearings may
also be invariant to other bearing-preserving motions. [See, for
example, Fig. 2(a).] It is of great interest to understand when
Null(B) is exactly equal to span{1n ⊗ Id, p

∗}. As shown in
[20], when G is undirected, Null(B) = span{1n ⊗ Id, p

∗} if
and only if G(p) is infinitesimally bearing rigid. The definition
of the infinitesimal bearing rigidity and preliminaries to the
bearing rigidity theory are given in the Appendix.

We continue with the analysis by partitioning B as

B =

[
B�� B�f

Bf� Bff

]

where B�� ∈ R
dn�×dn� , B�f ∈ R

dn�×dnf Bf� ∈ R
dnf×dn� , and

Bff ∈ R
dnf×dnf . As will be shown later, the submatrix Bff

plays an important role in this work.
Lemma 2: The submatrix Bff ∈ R

dnf×dnf is symmetric
and positive semidefinite.

Proof: The submatrix Bff can be written as Bff =
B0 +D where B0 ∈ R

dnf×dnf is the bearing Laplacian
for the subgraph of the followers and D ∈ R

dnf×dnf is
a positive semidefinite block-diagonal matrix with [D]ii =∑

j∈V�∩Ni
Pg∗

ij
for i ∈ Vf . Note B0 is symmetric because

the edges among the followers are assumed to be bidirec-
tional. For any x = [xT

1 , . . . , x
T
nf
]
T ∈ R

dnf , we have xTB0x =∑
i∈Vf

∑
j∈Vf∩Ni

‖Pg∗
ij
(xi − xj)‖2 ≥ 0 and, hence, B0 is pos-

itive semidefinite. Since D is also positive semidefinite, the
matrix Bff is positive semidefinite. �

2) Uniqueness of the Target Formation: Based on the bear-
ing Laplacian, we can analyze the existence and uniqueness
of the target formation p∗ (i.e., the existence and uniqueness
of solutions to the equations in Definition 1). The bearing
constraints and leader positions are feasible if there exists at
least one formation that satisfies them. Feasible bearings and
leader positions may be calculated from an arbitrary formation
configuration that has the desired geometric pattern. In general,
given a set of feasible bearing constraints and leader posi-
tions, the target formation may not be unique. [See, for example,
Fig. 2(a)]. In fact, the uniqueness problem of the target forma-
tion is identical to the localizability problem in bearing-only
network localization [20]. We next give the necessary and
sufficient condition for uniqueness of the target formation.

Theorem 1 (Uniqueness of the Target Formation): Given
feasible bearing constraints and leader positions, the target
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formation in Definition 1 is unique if and only if Bff is non-
singular. When Bff is nonsingular, the position and velocity of
the followers in the target formation are uniquely determined as

p∗f (t) = −B−1
ffBf�p�(t), v∗f (t) = −B−1

ffBf�v�(t). (4)

Proof: As shown in [20], the target formation is uniquely
determined by the bearings and leader positions if and only if
Bff is nonsingular. It follows from Lemma 1 that Bp∗ = 0,
which further implies Bffp

∗
f + Bf�p� = 0. When Bff is non-

singular, p∗f = −B−1
ffBf�p�. Then, v∗f = ṗ∗f = −B−1

ffBf�v�. �
A variety of other conditions for uniqueness of the target

formation can be found in [20]. Here, we highlight two use-
ful conditions. A useful necessary condition is that a unique
target formation must have at least two leaders. In this paper,
we always assume there exist at least two leaders. A useful
sufficient condition is that the target formation is unique if it
is infinitesimally bearing rigid and has at least two leaders.
By the sufficient condition, in order to design a unique target
formation, we can first design an infinitesimally bearing rigid
formation and then arbitrarily assign two agents as leaders.
Fig. 2(b) and (c) shows examples of unique target formations.
More examples can be found in [20]. For the analysis in the
sequel, we adopt the following uniqueness assumption.

Assumption 1: The target formation G(p∗(t)) is unique for
all t ≥ 0, which means Bff is nonsingular.

3) Target Formation Maneuvering: In bearing-based forma-
tion maneuver control, the desired translational and scaling
maneuver of the formation is known only to the leaders. In
order to achieve the desired maneuvers, the leaders must have
appropriate motions. We now study how the leaders should
move to achieve the desired maneuvers of the target formation.
Formation control laws will be designed later such that the real
formation is steered to track the target formation.

To describe the translational and scaling maneuvers, we
define the centroid, c(p∗(t)), and the scale, s(p∗(t)), for the
target formation as

c (p∗(t))
Δ
=

1

n

∑
i∈V

p∗i(t) =
1

n
(1n ⊗ Id)

T p∗(t)

s (p∗(t))
Δ
=

√
1

n

∑
i∈V

‖p∗i(t)− c(p∗(t))‖2

=
1√
n
‖p∗(t)− 1n ⊗ c(p∗(t))‖ .

The desired maneuvering dynamics of the centroid and scale of
the target formation are given by

ċ (p∗(t)) = vc(t), ṡ (p∗(t)) = α(t)s (p∗(t)) (5)

where vc(t) ∈ R
d denotes the desired velocity common to all

agents and α(t) ∈ R is the varying rate of the scale. The
formation scale expands when α(t) > 0 and contracts when
α(t) < 0. Suppose vc(t) and α(t) are known by the leaders. We
next show how the leaders should move to achieve the desired
dynamics in (5).

Theorem 2 (Target Formation Maneuvering): The desired
dynamics of the centroid and the scale given in (5) are achieved

if the velocities of the leaders have the form of

vi(t) = vc(t) + α(t) [pi(t)− c (p∗(t))] , i ∈ V�. (6)

Proof: The vector form of (6) is v�(t) = 1n�
⊗ vc(t) +

α(t)[p�(t)−1n�
⊗c(p∗(t))]. Since span{1n⊗Id, p

∗}⊆Null(B)
as given in Lemma 1, we have

B (1n ⊗ vc(t) + α(t) (p∗(t)− 1n ⊗ c (p∗(t)))) = 0.

The above equation implies Bf�v� + Bff [1nf
⊗ vc(t) +

α(t)[p∗f (t)− 1nf
⊗ c(p∗(t)))] = 0. Then, v∗f (t) is calculated as

v∗f (t) =B−1
ffBf�v�(t)

=1nf
⊗ vc(t) + α(t)

[
p∗f (t)− 1nf

⊗ c (p∗(t))
]

whose elementwise form is v∗i (t) = vc(t) + α(t)(p∗i (t)−
c(p∗(t))) for all i ∈ Vf . Note ṗ∗ = [vT� , (v

∗
f )

T ]
T
= 1n ⊗

vc(t) + α(t)(p∗ − 1n ⊗ c(p∗)). Substituting ṗ∗ into ċ(p∗) and
ṡ(p∗) gives

ċ(p∗) =
1

n
(1n ⊗ Id)

T ṗ∗

=
1

n
(1n ⊗ Id)

T [1n ⊗ vc(t) + α(t) (p∗ − 1n ⊗ c(p∗))]

=
1

n
(1n ⊗ Id)

T (1n ⊗ vc(t)) = vc(t)

ṡ(p∗) =
1√
n

(p∗ − 1n ⊗ c(p∗))T

‖p∗ − 1n ⊗ c(p∗)‖ (ṗ∗ − 1n ⊗ vc(t))

=
1√
n

(p∗ − 1n ⊗ c(p∗))T

‖p∗ − 1n ⊗ c(p∗)‖ α(t) (p∗ − 1n ⊗ c(p∗))

=α(t)s(p∗).

�
As shown in (6), the velocity of each leader should be a

linear combination of the common translational velocity and
the velocity induced by the scaling variation. In addition to
vc(t) and α(t), each leader should also know the centroid
c(p∗(t)), which is a global information of the target formation.
This quantity may be estimated in a distributed way using, for
example, consensus filters, as described in [22].

III. BEARING-BASED FORMATION CONTROL LAWS

In this section, we propose two distributed control laws to
steer the followers to track the maneuvering target formation.
The first control law requires relative position and velocity
feedback; with this control law, the formation tracks target
formations with constant velocities. The second control law
requires position, velocity, and acceleration feedback; with this
control law, the formation tracks target formations with time-
varying velocities.
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Fig. 3. Geometric meaning of the term Pg∗ij
(pj − pi) in control law (7).

A. Formation Control With Constant Leader Velocity

The bearing-based control law for follower i ∈ Vf is pro-
posed as

ui = −
∑
j∈Ni

Pg∗
ij
[kp(pi − pj) + kv(vi − vj)] (7)

where Pg∗
ij
= Id − g∗ij(g

∗
ij)

T is a constant orthogonal projec-
tion matrix, and kp and kv are positive constant control gains.
Several remarks on the control law are given below. First,
the neighbor j ∈ Ni of agent i may be either a follower or a
leader. Second, the proposed control law has a clear geometric
meaning illustrated in Fig. 3: the control term Pg∗

ij
(pj − pi)

steers agent i to a position where gij is aligned with g∗ij . Third,
the proposed control law has a similar form as the second-order
linear consensus protocols [23]–[25]. The difference is that in
the consensus protocols, the weight for each edge is a positive
scalar, whereas in the proposed control law, the weight for each
edge is a positive semidefinite orthogonal projection matrix.
It is precisely the special properties of the projection matrices
that allows the proposed control law to solve the bearing-based
formation control problem. The convergence of control law (7)
is analyzed below.

Theorem 3: Under control law (7), when the leader velocity
v�(t) is constant, the tracking errors δp(t) and δv(t) as defined
in (1) globally and exponentially converge to zero.

Proof: With control law (7), the dynamics of the follow-
ers can be expressed in a matrix-vector form as

v̇f = −kp(Bffpf + Bf�p�)− kv(Bffvf + Bf�v�)

= −kpBffδp − kvBffδv (8)

where the second equality is due to the fact that δp = pf +
B−1
ffBf�p� and δv = vf + B−1

ffBf�v� as shown in (4). Substitut-

ing (8) into the error dynamics gives δ̇v = v̇f + B−1
ffBf�v̇� =

−kpBffδp − kvBffδv + B−1
ffBf�v̇�, which can be rewritten in

a compact form as[
δ̇p
δ̇v

]
=

[
0 I

−kpBff −kvBff

] [
δp
δv

]
+

[
0

B−1
ffBf�

]
v̇�. (9)

Let λ be an eigenvalue of the state matrix of (9). The char-
acteristic equation of the state matrix is given by det(λ2I +
λkvBff + kpBff ) = 0. It can be calculated that λ = (−kvμ±√
k2vμ

2 − 4kpμ)/2, where μ > 0 is an eigenvalue of Bff .
Therefore, Re(λ) < 0 for any kp, kv, μ > 0. As a result, the
state matrix is Hurwitz and, hence, δp and δv globally and
exponentially converge to zero when v̇� ≡ 0. �

When v�(t) is time-varying (i.e., v̇�(t) is not identically zero),
the tracking errors may not converge to zero according to the

Fig. 4. Simulation example to demonstrate control law (7). (a) Trajectory.
(b) Total bearing error

∑
(i,j)∈E ‖gij(t) − g∗ij‖. (c) Velocity.

error dynamics (9). In order to perfectly track target formations
with time-varying v�(t), additional acceleration feedback is re-
quired as shown in the next subsection. In practical tasks where
the desired target formation has piecewise constant velocities,
the control law (7) may still give satisfactory performance.

A simulation example is given in Fig. 4 to illustrate control
law (7). The target formation in this example is the square
shown in Fig. 2(b). There are two leaders and two followers.
As shown in Fig. 4(a) and (b), the translation and scale of
the formation are continuously varying and, in the meantime,
the desired formation pattern is maintained. In Fig. 4(c), the
x-velocity of each follower converges to a value smaller than
that of the leaders, because the velocity of a follower is a
combination of the translational and scaling velocities, and the
scaling velocity in the x-direction is negative in this example.
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B. Formation Control With Time-Varying Leader Velocity

Now consider the case where v�(t) is time-varying (i.e., v̇�(t)
is not identically zero). Assume v̇�(t) is piecewise continuous.
The following control law handles the time-varying case:

ui = −K−1
i

∑
j∈Ni

Pg∗
ij
[kp(pi−pj)+kv(vi−vj)− v̇j ] (10)

where Ki =
∑

j∈Ni
Pg∗

ij
. Compared to control law (7), control

law (10) requires the acceleration of each neighbor. The design
of control law (10) is inspired by the consensus protocols for
tracking time-varying references as proposed in [2] and [23].

The nonsingularity of Ki is guaranteed by the uniqueness of
the target formation as shown in the following result.

Lemma 3: The matrix Ki is nonsingular for all i ∈ Vf if the
target formation is unique.

Proof: First of all, the matrix Ki is singular if and only if
the bearings {g∗ij}j∈Ni

are collinear, because for any x ∈ R
d,

xTKix=0⇔
∑

j∈Ni
xTPg∗

ij
x=0⇔Pg∗

ij
x=0, ∀j ∈Ni. Since

Null(Pg∗
ij
) = span{g∗ij}, we know xTKix = 0 if and only

if x and {g∗ij}j∈Ni
are collinear. If {g∗ij}j∈Ni

are collinear,
the follower p∗i cannot be uniquely determined in the target
formation because p∗i can move along g∗ij without changing any
bearings. As a result, if Ki is singular, the target formation is
not unique. �

The convergence of control law (10) is analyzed below.
Theorem 4: Under control law (10), for any time-varying

leader velocity v�(t), the tracking errors δp(t) and δv(t) as
defined in (1) globally and exponentially converge to zero.

Proof: Multiplying Ki on both sides of control law (10)
gives∑
j∈Ni

Pg∗
ij
(v̇i − v̇j) =

∑
j∈Ni

Pg∗
ij
[−kp(pi − pj)− kv(vi − vj)]

whose matrix-vector form is

Bff v̇f + Bf�v̇� = −kp(Bffpf+Bf�p�)−kv(Bffvf+Bf�v�)

=−kpBffδp − kvBffδv.

It follows that v̇f =−kpδp−kvδv−B−1
ffBf�v̇�. Then, the track-

ing error dynamics are δ̇p = δv and δ̇v = v̇f + B−1
ffBf�v̇� =

−kpδp + kvδv, which are expressed in a compact form as[
δ̇p
δ̇v

]
=

[
0 I

−kpI −kvI

] [
δp
δv

]
. (11)

The eigenvalue of the state matrix is λ = (−kv ±√
k2v − 4kp)/2, which is always in the open left-half plane for

any kp, kv > 0. The global and exponential convergence result
follows. �

By comparing the error dynamics in (11) and (9), we see that
the role of the acceleration feedback in control law (10) is to
eliminate the term that contains v̇�(t) so that it does not affect
the convergence of the errors.

A simulation example is shown in Fig. 5 to illustrate control
law (10). The target formation in this example is the 3-D cube
shown in Fig. 2(c), which has two leaders and six followers.
As shown in Fig. 5(a) and (b), the translation and scale of the
formation are continuously varying and, in the meantime, the

Fig. 5. Simulation example to demonstrate control law (10). (a) Tra-
jectory. (The dark area stands for an obstacle.) (b) Total bearing error∑

(i,j)∈E ‖gij(t) − g∗ij‖. (c) Velocity.

formation converges from an initial configuration to the desired
pattern. Although the velocities of the leaders are time-varying,
the desired formation pattern is maintained exactly during the
formation evolution.

The simulation example also demonstrates that the proposed
control law can be used for obstacle avoidance, such as pass-
ing through narrow passages. In practice, collision avoidance
requires sophisticated mechanisms, such as obstacle detection
and path generation [26]. Details on obstacle avoidance are out
of the scope of this paper.

IV. BEARING-BASED FORMATION CONTROL

WITH PRACTICAL ISSUES

In this section, we consider bearing-based formation control
in the presence of some issues that may appear in practical
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implementations, including input disturbances, input saturation,
and collision avoidance among the agents.

A. Constant Input Disturbance

Suppose there exists an unknown constant input disturbance
for each follower. The dynamics of follower i ∈ Vf are

ṗi = vi, v̇i = ui + wi

where wi ∈ R
d is an unknown constant signal, and let wf =

[wT
1 , . . . ,wT

nf
]
T

. In practice, the constant input disturbance
might be caused by, for example, constant sensor or actuator
biases. In order to handle the input disturbance, we add an
integral control term to control law (7) and obtain

ui = −
∑
j∈Ni

Pg∗
ij

⎡
⎣kp(pi−pj)+kv(vi−vj)+kI

t∫
0

(pi−pj)dτ

⎤
⎦

(12)

where kI > 0 is the constant integral control gain. We next
show that the integral control will not only eliminate the impact
of the constant disturbance but will also handle the case where
v̇�(t) is nonzero and constant.

Theorem 5: Consider the control law (12) with constant dis-
turbance wf and constant leader acceleration v̇�. If the control
gains satisfy 0 < kI < kpkvλmin(Bff ), then the tracking errors
δp(t) and δv(t) globally and exponentially converge to zero.

Proof: The matrix-vector form of control law (12) is

v̇f = −kI

t∫
0

(Bffpf + Bf�p�)dτ − kp(Bffpf + Bf�p�)

− kv(Bffpf + Bf�p�) + wf

= −kIBff

t∫
0

δpdτ − kpBffδp − kvBffδv + wf .

Denote η
Δ
=

∫ t

0 δpdτ . It then follows that η̇ = δp, δ̇p = δv,
and δ̇v = v̇f + B−1

ffBf�v̇� = −kIBffη − kpBffδp − kvBffδv
+wf + B−1

ffBf�v̇�, the matrix-vector form of which is given by⎡
⎣ η̇

δ̇p
δ̇v

⎤
⎦ =

⎡
⎣ 0 I 0

0 0 I
−kIBff −kpBff −kvBff

⎤
⎦
⎡
⎣ η
δp
δv

⎤
⎦

+

⎡
⎣ 0

0
wf

⎤
⎦+

⎡
⎣ 0

0
B−1
ffBf�

⎤
⎦ v̇�. (13)

Denote A as the state matrix of the above dynamics with
λ an associated eigenvalue. We next identify the condition
for Re(λ) < 0. Note the state matrix is in the controllable
canonical form. Then, the characteristic polynomial is

det(λI −A) = det(λ3I + kvBffλ
2 + kpBffλ+ kIBff).

As a result, λ3 can be viewed as an eigenvalue of the matrix
−(kvλ

2 + kvλ+ kI)Bff . By denoting μ as an eigenvalue of
Bff , we have λ3 + kvμλ

2 + kpμλ+ kIμ = 0. By the Routh-
Hurwitz stability criterion, we have Re(λ) < 0 if and only
kvμ, kpμ, kIμ>0 and (kvμ)(kpμ) > kIμ. Since kv, kp, μ > 0,
we have 0 < kI < kvkpμ. In order to make Re(λ) < 0 for all

μ, it is required 0 < kI < kvkpλmin(Bff ) where λmin(Bff ) is
the minimum eigenvalue of Bff . When A is Hurwitz, given
constant wf and v̇�, the steady state is δp(∞) = δv(∞) = 0 and
η(∞) = −B−1

ff (wf + B−1
ffBf�v̇�)/kI . �

As can be seen from the error dynamics (13), when v̇� is
constant, it has the same impact as an input disturbance and,
hence, is handled by the integral control. The idea of integral
control has also been applied in consensus, distance-based, and
bearing-based formation maneuver control problems [21], [27],
[28]. It is also interesting to note that the integral control gain
must be bounded by λmin(Bff), which we expect should have
graph-theoretic interpretations and is the subject of future work.

Similarly, by adding an integral control term to control law
(10), we obtain the following control law that can handle the
unknown constant input disturbance and time-varying v�(t):

ui = −K−1
i

∑
j∈Ni

Pg∗
ij

⎡
⎣kp(pi − pj) + kv(vi − vj)− v̇j

+ kI

t∫
0

(pi − pj)dτ

⎤
⎦ . (14)

The convergence result for control law (14) is given below. The
proof is similar to Theorem 5 and omitted.

Theorem 6: Consider the control law (12) with constant
disturbance wf and time-varying leader velocity v�(t). If the
control gains satisfy 0 < kI < kpkv , then the tracking errors
δp(t) and δv(t) globally and exponentially converge to zero.

B. Acceleration Saturation

In practical implementations, the acceleration input is always
bounded. In the presence of acceleration saturation, the control
law (7) becomes

ui = sat

⎧⎨
⎩−

∑
j∈Ni

Pg∗
ij
[kp(pi − pj) + kv(vi − vj)]

⎫⎬
⎭ (15)

where sat(·) is a saturation function that is either sat(x) =
sign(x)min{|x|, β} or sat(x) = β tanh(x) where x ∈ R and
β > 0 is the constant bound for |x|. For a vector x =
[x1, . . . , xq]

T ∈ R
q, sat(x) is defined component-wise as

sat(x) = [sat(x1), . . . , sat(xq)]
T .

Due to the saturation function, the formation dynamics be-
come nonlinear and the formation stability can be proven by a
Lyapunov approach. Inspired by the work in [25], we introduce

the integral function Φ(x)
Δ
=

∫ x

0 sat(τ)dτ for x ∈ R. Due to
the properties of sat(·), we have that Φ(x) ≥ 0 for all x ∈ R

and Φ(x) = 0 if and only if x = 0. In the case of sat(x) =
β tanh(x), we have Φ(x) = β log(cosh(x)). For a vector x =
[x1, . . . , xq]

T ∈ R
q, Φ(x) is defined component-wise as

Φ(x) =

⎡
⎣ x1∫

0

sat(τ)dτ, . . . ,

xq∫
0

sat(τ)dτ

⎤
⎦
T

∈ R
q.

The useful properties of Φ(·) and sat(·) are given below.
Lemma 4: Given x(t) ∈ R

q , the quantity 1TΦ(x) satisfies

a) 1TΦ(x) ≥ 0 and 1TΦ(x) = 0 if and only if x = 0;
b) d(1TΦ(x))/dt = ẋT sat(x).
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Proof: Note 1TΦ(x) =
∑q

i=1 Φ(xi). Since Φ(xi) ≥ 0
and Φ(xi) = 0 if and only if xi = 0, property (a) is proven.
The time derivative of 1TΦ(x) is given by d(1TΦ(x))/dt =∑q

i=1 Φ̇(xi) =
∑q

i=1 ẋisat(xi) = ẋT sat(x). �
Lemma 5: For any two vectors x, y ∈ R

q, it al-
ways holds that yT [sat(x− y)− sat(x)] ≤ 0 and yT [sat(x) −
sat(x+ y)] ≤ 0. Moreover, if sat(·) is strictly monotonic, the
equalities hold if and only if y = 0.

Proof: We only prove the first inequality; the second
one can be proven similarly. Note yT (sat(x− y)− sat(x)) =∑q

i=1 yi(sat(xi − yi)− sat(xi)). It follows from the mono-
tonicity of the saturation function that sat(xi − yi)− sat(xi) ≥
0 if yi < 0, and sat(xi − yi)− sat(xi) ≤ 0 if yi > 0. Therefore,
yi(sat(xi − yi)− sat(xi)) ≤ 0 for all xi, yi ∈ R. If sat(·) is
strictly monotonic, yi(sat(xi − yi)− sat(xi)) = 0 if and only
if yi = 0, which completes the proof. �

With the above preparation, we now analyze the formation
stability under control law (15).

Theorem 7: Under control law (15) with a constant leader
velocity v�(t), the tracking errors δp(t) and δv(t) globally and
asymptotically converge to zero.

Proof: The matrix-vector form of control law (15) is
v̇f = sat(−kpBffδp − kvBffδv). Substituting v̇f and v̇� = 0

into the tracking error dynamics gives δ̇v = v̇f + B−1
ffBf�v̇� =

sat(−kpBffδp − kvBffδv). Consider the Lyapunov function

V = 1TΦ(−kpBffδp − kvBffδv)

+ 1TΦ(−kpBffδp) + kpδ
T
v Bffδv.

It follows from Lemma 4(a) that V ≥ 0 and V = 0 if and only
if δp = δv = 0. According to Lemma 4(b), the time derivative
of the Lyapunov function is:

V̇ = (−kpBffδv − kvBff δ̇v)
T sat(−kpBffδp − kvBffδv)

+ (−kpBffδv)
T sat(−kpBffδp) + 2kpδ

T
v Bff δ̇v.

It follows from sat(−kpBffδp − kvBffδv) = δ̇v that

V̇ =−(kpBffδv)
T δ̇v − (kvBff δ̇v)

T δ̇v

+ (−kpBffδv)
T sat(−kpBffδp) + 2kpδ

T
v Bff δ̇v

=−kv δ̇
T
v Bff δ̇v−(kpBffδv)

T sat(−kpBffδp)+kpδ
T
v Bff δ̇v

=−kv δ̇
T
v Bff δ̇v + kpδ

T
v Bff

× [sat(−kpBffδp − kvBffδv)− sat(−kpBffδp)]

where the first term −kv δ̇
T
v Bff δ̇v is nonpositive and the second

term is also nonpositive according to Lemma 5. As a result,
V̇ ≤ 0 for all t ≥ 0.

We next identify the invariant set for V̇ = 0. When V̇ = 0,
we have

−kv δ̇
T
v Bff δ̇v =0 (16)

kpδ
T
v Bff

[
δ̇v − sat(−kpBffδp)

]
=0. (17)

It follows from (16) that δ̇v = sat(−kpBffδp − kvBffδv) = 0,
which further implies kpBffδp = −kvBffδv. It then follows
from (17) that kpδTv Bff sat(−kvBffδv) = 0, which indicates
Bffδv = 0 ⇔ δv = 0 because Bffδv and sat(Bffδv) have the

same sign componentwise. Since kpBffδp = −kvBffδv , we
have δp = 0. Therefore, V̇ = 0 if and only if δp = δv = 0.
According to the invariance principle, the tracking errors δp and
δv globally and asymptotically converge to zero. �

In order to handle input saturation in the case of time-varying
v�(t), we use the control law

ui = K−1
i sat

⎧⎨
⎩−

∑
j∈Ni

Pg∗
ij
[kp(pi − pj) + kv(vi − vj)]

⎫⎬
⎭

+K−1
i

∑
j∈Ni

Pg∗
ij
v̇j (18)

where Ki =
∑

j∈Ni
Pg∗

ij
. Although the saturation function is

not applied to the entire acceleration input, the above control
law ensures bounded input given arbitrary initial conditions.
In particular, under control law (18), the velocity dynamics are∑

j∈Ni
Pg∗

ij
(v̇i − v̇j) = sat(�), where the quantity in the satu-

ration function is written in short as sat(�). Then, the matrix-
vector form of the velocity dynamics is Bff v̇f + Bf�v̇� =
sat(�), which implies v̇f = B−1

ff sat(�)− B−1
ffBf�v̇�. It follows

that

‖v̇f‖∞ ≤ ‖B−1
ff ‖∞‖sat(�)‖∞ + ‖B−1

ffBf�‖∞‖v̇�‖∞.

The upper bound for the acceleration as shown above is inde-
pendent of the initial conditions of the formation position or
velocity. It relies on the rigidity structure of the target formation
and the magnitude of the accelerations of the leaders. We
next characterize the global formation stability under control
law (18).

Theorem 8: Under control law (18) and for any time-
varying leader velocity v�(t), the tracking errors δp(t) and δv(t)
globally and asymptotically converge to zero.

Proof: Let εi
Δ
=
∑

j∈Ni
Pg∗

ij
(pi − pj). It follows from (18)

that ε̇i = sat(−kpεi − kv ε̇i). By denoting ε = [ε1, . . . , εnf
]T ,

we obtain

ε̇ = sat(−kpε− kv ε̇).

Note ε = Bffpf + Bf�p� = Bffδp and, hence, ε̇ = Bffδv . As
a result, ε = ε̇ = 0 ⇔ δp = δv = 0. We prove δp, δv → 0 by
showing ε, ε̇ → 0. To that end, consider the Lyapunov function

V = 1TΦ(−kpε− kv ε̇) + 1TΦ(−kpε) + kpε̇
T ε̇.

The time derivative of V is given by

V̇ =(−kpε̇− kv ε̈)sat(−kpε− kv ε̇)

+ (−kpε̇)sat(−kpε) + 2kpε̇
T ε̈

= − kv ε̈
T ε̈+ kpε̇

T [sat(kpε)− sat(kpε+ kv ε̇)] .

Similar to the proof of Theorem 7, it can be shown that V̇ ≤ 0
and the invariant set where V̇ = 0 is ε = ε̇ = 0. Therefore, by
the invariance principle, ε and ε̇ globally and asymptotically
converge to zero, and so do δp and δv . �
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C. Collision-Free Condition

Collision avoidance among the agents is an important issue
in practical formation control problems. The proposed control
laws can be implemented together with, for example, artificial
potentials [29] to ensure collision avoidance. In this paper,
we propose a sufficient condition on the initial formation that
ensures no collision between any pair of agents (even if they are
not neighbors). Suppose γ is the desired minimum distance that
should be guaranteed between any two agents and γ satisfies

0 ≤ γ < min
i,j∈V,t≥0

∥∥p∗i(t)− p∗j(t)
∥∥ .

Theorem 9: Under control law (7), for any constant leader
velocity v�, it is guaranteed that

‖pi(t)− pj(t)‖ > γ, ∀i, j ∈ V , ∀t ≥ 0

if δp(0) and δv(0) satisfy

kpδ
T
p (0)Bffδp(0) + δTv (0)δv(0)

<
kpλmin(Bff )

nf

(
min

i,j∈V,t≥0
‖p∗i(t)− p∗j(t)‖ − γ

)2

. (19)

Proof: For any i, j ∈ V , it always holds that

pi(t)−pj(t) ≡
[
p∗i(t)−p∗j(t)

]
+[pi(t)−p∗i(t)]−

[
pj(t)−p∗j(t)

]
where p∗i(t) and p∗j(t) are the expected positions for agents i
and j in the target formation. Note pi(t)− p∗i(t) ≡ 0 for i ∈ V�.
It follows that

‖pi(t)− pj(t)‖
≥

∥∥p∗i(t)− p∗j(t)
∥∥− ‖pi(t)− p∗i(t)‖ −

∥∥pj(t)− p∗j(t)
∥∥

≥
∥∥p∗i(t)− p∗j(t)

∥∥−
∑
k∈Vf

‖pk(t)− p∗k(t)‖

≥
∥∥p∗i(t)− p∗j(t)

∥∥−√
nf

∥∥pf (t)− p∗f (t)
∥∥

=
∥∥p∗i(t)− p∗j(t)

∥∥−√
nf ‖δp(t)‖ , ∀t ≥ 0. (20)

The above inequality gives a lower bound for ‖pi(t)− pj(t)‖.
If we can find a condition such that the lower bound is always
greater than γ, then the minimum distance γ can be guaranteed.
In this direction, consider the Lyapunov function

V (δp(t), δv(t)) = kpδ
T
p (t)Bffδp(t) + δTv (t)δv(t).

With the error dynamics as given in (9), the time derivative of
V along the error dynamics is V̇ = −2kvδ

T
v Bffδv ≤ 0. As a

result, we have

kpλmin(Bff)‖δp(t)‖2 ≤ kpδ
T
p (t)Bffδp(t)

≤ kpδ
T
p (t)Bffδp(t) + δTv (t)δv(t)

≤V (δp(0), δv(0))

which implies

‖δp(t)‖ ≤
√

V (δp(0), δv(0))

kpλmin(Bff )
. (21)

By combining (20) and (21), we have that ‖pi(t)− pj(t)‖ > γ
for all t ≥ 0 and all i, j ∈ V if δp(0) and δv(0) satisfies

min
i,j∈V,t≥0

∥∥p∗i(t)− p∗j(t)
∥∥−

√
nfV (δp(0), δv(0))

kpλmin(Bff)
> γ

which can be rewritten as (19). �
The intuition behind the condition in Theorem 9 is that

collision avoidance is guaranteed if the initial formation is
sufficiently close to the target formation. Theorem 9 is merely
applicable in the case of constant v�(t). For time-varying v�(t),
we have a similar condition for control law (10). The proof is
similar to Theorem 9 and omitted.

Theorem 10: Under control law (10), for any time-varying
leader velocity v�(t), it can be guaranteed that

‖pi(t)− pj(t)‖ > γ, ∀i, j ∈ V , ∀t ≥ 0

if δp(0) and δv(0) satisfy

kpδ
T
p (0)δp(0) + δTv (0)δv(0)

<
kp
nf

(
min

i,j∈V,t≥0

∥∥p∗i(t)− p∗j(t)
∥∥− γ

)2

.

The sufficient conditions given in Theorems 9 and 10 are
likely conservative in practice. For example, in the simulation
example shown in Fig. 4, no two agents collide during the
formation evolution even though the inequality (19) does not
hold. Specifically, the left-hand side of (19) is equal to 325.88,
whereas the right-hand side with γ = 0 is equal to 14.53.

V. CONCLUSION

This work proposed and analyzed a bearing-based approach
to the problem of translational and scaling formation maneu-
ver control in arbitrary dimensional spaces. We proposed a
variety of bearing-based formation control laws and analyzed
their global formation stability. There are several important
directions for future research. For example, in this paper, we
assume that the information flow between any two followers
is bidirectional. In the directional case, a new notion called
bearing persistence emerges and plays an important role in the
formation stability analysis [30]. Second, although the double-
integrator dynamics can approximately model some practical
physical systems, more complicated models, such as nonholo-
nomic models, should be considered in the future.

APPENDIX

A. Preliminaries to Bearing Rigidity Theory

Some basic concepts and results in the bearing rigidity
theory are revisited here. Details can be found in [16]. For
a formation G(p) with undirected graph G, assign a direction
to each edge in G to obtain an oriented graph. Express the
edge vector and the bearing for the kth directed edge in the
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oriented graph, respectively, as ek and gk
Δ
= ek/‖ek‖ for k ∈

{1, . . . ,m} where m = |E|. Define the bearing function FB :

R
dn → R

dm as FB(p)
Δ
= [gT1 , . . . , g

T
m]

T
. The bearing rigid-

ity matrix is defined as the Jacobian of the bearing function

RB(p)
Δ
= ∂FB(p)/∂p ∈ R

dm×dn. The bearing rigidity ma-
trix satisfies rank(RB) ≤ dn− d− 1 and span{1⊗ Id, p} ⊆
Null(RB) [16]. Let δp be a variation of p. If RB(p)δp = 0,
then δp is called an infinitesimal bearing motion of G(p). A
formation always has two kinds of trivial infinitesimal bear-
ing motions: translation and scaling of the entire formation.
A formation is called infinitesimally bearing rigid if all of
the infinitesimal bearing motions are trivial. The infinitesimal
bearing rigidity has the following important properties.

Theorem 11 ([16]): The following statements are equivalent:

a) G(p) is infinitesimally bearing rigid;
b) G(p) can be uniquely determined up to a translational and

scaling factor by the inter-neighbor bearings {gij}(i,j)∈E ;
c) rank(RB) = dn− d− 1;
d) Null(RB) = span{1n ⊗ Id, p}.

REFERENCES

[1] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation
control,” Automatica, vol. 53, pp. 424–440, Mar. 2015.

[2] W. Ren, “Multi-vehicle consensus with a time-varying reference state,”
Syst. Control Lett., vol. 56, pp. 474–483, 2007.

[3] Z. Sun and B. D. O. Anderson, “Rigid formation control with pre-
scribed orientation,” in Proc. IEEE Multi-Conf. Syst. Control, Sep. 2015,
pp. 639–645.

[4] A. N. Bishop, “Stabilization of rigid formations with direction-only con-
straints,” in Proc. 50th IEEE Conf. Dec. Control Eur. Control Conf.,
Orlando, FL, USA, Dec. 2011, pp. 746–752.

[5] T. Eren, “Formation shape control based on bearing rigidity,” Int. J.
Control, vol. 85, no. 9, pp. 1361–1379, 2012.

[6] S. Zhao and D. Zelazo, “Bearing-based distributed control and estima-
tion in multi-agent systems,” in Proc. Eur. Control Conf., Linz, Austria,
Jul. 2015, pp. 2207–2212.

[7] D. Zelazo, A. Franchi, and P. R. Giordano, “Rigidity theory in SE(2)
for unscaled relative position estimation using only bearing measure-
ments,” in Proc. Eur. Control Conf., Strasbourgh, France, Jun. 2014,
pp. 2703–2708.

[8] N. Moshtagh, N. Michael, A. Jadbabaie, and K. Daniilidis, “Vision-
based, distributed control laws for motion coordination of nonholo-
nomic robots,” IEEE Trans. Robot., vol. 25, no. 4, pp. 851–860,
Aug. 2009.

[9] R. Tron, J. Thomas, G. Loianno, J. Polin, V. Kumar, and K. Daniilidis,
“Vision-based formation control of aerial vehicles,” presented at the
Workshop Distrib. Control Estimation for Robotic Vehicle Netw.,
Berkeley, CA, USA, 2014.

[10] M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of triangu-
lar formations with angle-only constraints,” Syst. Control Lett., vol. 59,
pp. 147–154, 2010.

[11] A. Franchi, C. Masone, V. Grabe, M. Ryll, H. H. Bulthoff, and
P. R. Giordano, “Modeling and control of UAV bearing formations
with bilateral high-level steering,” Int. J. Robot. Res., vol. 31, no. 12,
pp. 1504–1525, 2012.

[12] A. Cornejo, A. J. Lynch, E. Fudge, S. Bilstein, M. Khabbazian, and
J. McLurkin, “Scale-free coordinates for multi-robot systems with
bearing-only sensors,” Int. J. Robot. Res., vol. 32, no. 12, pp. 1459–1474,
2013.

[13] R. Zheng and D. Sun, “Rendezvous of unicycles: A bearings-only and
perimeter shortening approach,” Syst. Control Lett., vol. 62, no. 5,
pp. 401–407, May 2013.

[14] S. Zhao, F. Lin, K. Peng, B. M. Chen, and T. H. Lee, “Distributed
control of angle-constrained cyclic formations using bearing-only mea-
surements,” Syst. Control Lett., vol. 63, no. 1, pp. 12–24, 2014.

[15] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass formation
control: A human-swarm interaction perspective,” in Proc. Amer. Control
Conf. USA, Jun. 2014, pp. 3881–3886.

[16] S. Zhao and D. Zelazo, “Bearing rigidity and almost global
bearing-only formation stabilization,” IEEE Trans. Autom. Control,
vol. 61, no. 5, pp. 1255–1268, May 2016.

[17] S. Coogan and M. Arcak, “Scaling the size of a formation using rel-
ative position feedback,” Automatica, vol. 48, no. 10, pp. 2677–2685,
Oct. 2012.

[18] M.-C. Park, K. Jeong, and H.-S. Ahn, “Formation stabilization and resiz-
ing based on the control of inter-agent distances,” Int. J. Robust Nonlinear
Control, vol. 25, no. 14, pp. 2532–2546, Sep. 25, 2015.

[19] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control
of multi-agent systems using complex laplacian,” IEEE Trans. Autom.
Control, vol. 59, no. 7, pp. 1765–1777, Jul. 2014.

[20] S. Zhao and D. Zelazo, “Localizability and distributed protocols for
bearing-based network localization in arbitrary dimensions,” preprint
arXiv:1502.00154.

[21] S. Zhao and D. Zelazo, “Bearing-based formation maneuvering,” in
Proc. IEEE Multi-Conf. Syst. Control, Sydney, Australia, Sep. 2015,
pp. 658–663.

[22] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa, and
R. Sukthankar, “Decentralized estimation and control of graph con-
nectivity for mobile sensor networks,” Automatica, vol. 46, no. 2,
pp. 390–396, 2010.

[23] W. Ren, “On consensus algorithms for double-integrator dynamics,” IEEE
Trans. Autom. Control, vol. 53, no. 6, pp. 1503–1509, Jul. 2008.

[24] W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient con-
ditions for second-order consensus in multi-agent dynamical systems,”
Automatica, vol. 46, pp. 1089–1095, 2010.

[25] Z. Meng, Z. Zhao, and Z. Lin, “On global leader-following consensus
of identical linear dynamic systems subject to actuator saturation,”
Syst. Control Lett., vol. 62, pp. 132–142, 2013.

[26] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and
C. J. Taylor, “A vision-based formation control framework,” IEEE Trans.
Robot. Autom., vol. 18, no. 5, pp. 813–825, Oct. 2002.

[27] M. Andreasson, D. V. Dimarogonas, H. Sandberg, and K. H. Johansson,
“Distributed control of networked dynamical systems: Static feed-
back, integral action and consensus,” IEEE Trans. Autom. Control, vol. 59,
no. 7, pp. 1750–1764, Jul. 2014.

[28] O. Rozenheck, S. Zhao, and D. Zelazo, “A proportional-integral con-
troller for distance-based formation tracking,” in Proc. Eur. Control Conf.,
Linz, Austria, Jul. 2015, pp. 1687–1692.

[29] Z. Han, Z. Lin, Z. Chen, and M. Fu, “Formation maneuvering with colli-
sion avoidance and connectivity maintenance,” in Proc. IEEE Multi-Conf.
Syst. Control, Sep. 2015, pp. 652–657.

[30] S. Zhao and D. Zelazo, “Bearing-based formation stabilization with di-
rected interaction topologies,” presented at the 54th IEEE Conf. Dec.
Control, Osaka, Japan, pp. 6115–6120, Dec. 2015.

Shiyu Zhao received the B.Eng. and M.Eng. degrees
in electrical engineering from Beijing University
of Aeronautics and Astronautics, Beijing, China, in
2006 and 2009, respectively, and the Ph.D. degree in
electrical engineering from the National University
of Singapore, Singapore, in 2014.

He is a Postdoctoral Research Associate in the
Department of Mechanical Engineering at the Uni-
versity of California, Riverside, CA, USA. From
2014 to 2015, he was a Postdoctoral Research As-
sociate in the Faculty of Aerospace Engineering at

the Technion-Israel Institute of Technology, Haifa, Israel. His research interests
lie in distributed control and estimation over networked dynamical systems.

Daniel Zelazo (M’11) received the B.Sc. and
M.Eng. degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, USA, in 1999 and 2001, respectively, and the
Ph.D. degree in aeronautics and astronautics from
the University of Washington, Seattle, WA, USA,
in 2009.

He is an Assistant Professor of aerospace engi-
neering at the Technion-Israel Institute of Technol-
ogy, Haifa, Israel. From 2010 to 2012, he was a
Postdoctoral Research Associate and Lecturer at the

Institute for Systems Theory & Automatic Control, University of Stuttgart,
Stuttgart, Germany. His research interests include topics related to multi-agent
systems, optimization, and graph theory.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


