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This paper studies decentralized formation control of multiple vehicles in the plane when each vehicle can
only measure the local bearings of their neighbors by using bearing-only sensors. Since the inter-vehicle dis-
tance cannot be measured, the target formation involves no distance constraints. More specifically, the target
formation considered in this paper is an angle-constrained cyclic formation, where each vehicle has exactly
two neighbors and the angle at each vehicle subtended by its two neighbors is pre-specified. To stabilize the
target formation, we propose a discontinuous control law that only requires the sign information of the angle
errors. Due to the discontinuity of the proposed control law, the stability of the closed-loop system is analyzed
by employing a locally Lipschitz Lyapunov function and nonsmooth analysis tools. We prove that the target
formation is locally finite-time stable with collision avoidance guaranteed.
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1 Introduction

In the existing work on multi-vehicle formation control, it is commonly assumed that each vehicle
can obtain the positions of their neighbors (Lin et al. 2005, Dimarogonas and Johansson 2010,
Ren and Cao 2011, Tian and Wang 2013, Kopeikin et al. 2013, Keller et al. 2013, Hu et al. 2013).
It is notable that position information essentially consists of two kinds of partial information:
bearing and distance. In recent years, formation control using bearing-only (Moshtagh et al.
2008, Basiri et al. 2010, Eren 2012, Franchi and Giordano 2012) or distance-only (Cao et al.
2011) measurements has attracted some attention. In this paper we will investigate formation
control using bearing-only measurements (or called bearing-based formation control). We assume
that each vehicle can only measure the bearings of their neighbors and inter-vehicle distances are
unavailable. In practical applications, bearings can be conveniently measured by using monocular
cameras which are very common sensors nowadays. A camera inherently is a bearing-only sensor.
As long as the target can be localized in the image, the bearing of the target relative to the
camera can be easily calculated based on the pin-hole camera model (Ma et al. 2004, Section
3.3). Hence vision-based cooperative control tasks (Das et al. 2002, Mariottini et al. 2009) are
the potential applications of the research on bearing-based formation control.

A number of interesting and challenging problems arise when only bearings are available for
formation control. One key problem is how to utilize the bearing measurements for formation
control. There are generally two approaches. The first approach is to implement control laws
directly using bearing measurements; the second approach is to estimate vehicle positions us-
ing bearing measurements, and then implement formation control laws based on the estimated
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positions. In this paper we will adopt the first approach. The reason we do not use the second
approach is that position estimation using bearings requires certain observability conditions.
For example, suppose vehicle A is stationary and vehicle B can measure the bearings of vehi-
cle A from two different angles. Then vehicle A can be localized as the intersection of the two
bearings measured by vehicle B. But if vehicle B is only able to measure vehicle A from one
single angle, the distance between the two vehicles is impossible to be recovered. In other word-
s, relative motions between vehicles are fundamentally necessary for position estimation using
bearing measurements. However, in many formation control tasks, the relative positions of the
vehicles in the formation are required to be stationary and hence the observability condition is
not satisfied.

If each vehicle is controlled based only on bearings, the inter-vehicle distance in the formation
would be uncontrollable. As a result, any bearing-based formation control law can only stabilize
bearing-constrained target formations. The term bearing-constrained as used here refers to the
bearings of the edges connecting vehicles or the angles at each vehicle subtended by their neigh-
bors are constrained. Another challenging problem is collision avoidance, which is important
for all kinds of formation control problems. Collision avoidance is particularly important for
bearing-based formation control as inter-vehicle distances are unmeasurable and uncontrollable.
In order to make any bearing-based formation control law practically applicable, we need to
guarantee collision avoidance between any vehicles no matter they are neighbors or not.

As a relatively new research topic, bearing-based formation control has not been completely
solved yet. Only a few special cases have been analyzed in the literature. Moshtagh et al. (2008)
proposed a distributed control law for balanced circular formations of unit speed vehicles. The
proposed control law can globally stabilize balanced circular formations using bearing-only mea-
surements. Basiri et al. (2010) studied distributed control of triangular formations of three
vehicles using bearing-only measurements. The global stability of the proposed formation con-
trol law is proved by employing the Poincare-Bendixson theorem. But the Poincare-Bendixson
theorem is only applicable to the scenarios involving only three or four vehicles. Eren (2012)
investigated formation shape control using bearing measurements. Bearing rigidity is proposed
to formulate bearing-based formation control problems. A bearing-based control law is designed
for a formation of three nonholonomic vehicles. Bishop (2011) proposed a control law that can
stabilize general bearing-constrained formations. However, the proposed control law in (Bishop
2011) still requires position measurements. Based on the concept of parallel rigidity, Franchi and
Giordano (2012) proposed a distributed control law to stabilize bearing-constrained formations
using bearing-only measurements. However, the proposed control law in (Franchi and Giordano
2012) requires communications among the vehicles. That is different from the problem consid-
ered in this paper where we assume there are no communications between any vehicles and each
vehicle cannot share their bearing measurements with their neighbors.

In this paper, we study distributed bearing-based control of cyclic formations in the plane. The
sensing graph of the formation is an undirected cycle with fixed topology. In the target formation,
the angle at each vehicle subtended by its two neighbors is constrained. For cyclic formations
the angle constraints cannot specify a unique formation shape. To well define a formation shape
using angle constraints, we may assign more complicated underlying graphs such as rigid graphs
to the formation. But we only consider cycle graphs in this paper and leave more complicated
cases for future research. The main contributions of this work are summarized as below.

1) To stabilize angle-constrained cyclic formations, we propose a distributed discontinuous con-
trol law that only requires the sign information of the angle errors. Compared to the existing
work in (Basiri et al. 2010), our control law is able to stabilize cyclic formations with an ar-
bitrary number of vehicles. Additionally, this work requires no parallel rigidity assumptions
(Bishop 2011, Eren 2012) on the target formation .

2) Finite-time control has attracted much attention in recent years (Chen et al. 2011, Meng and
Lin 2012, Hong et al. 2010, 2002, Xiao et al. 2009). Besides fast convergence, finite-time control
can also bring benefits such as disturbance rejection and robustness against uncertainties
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(Bhat and Bernstein 2000). In this work we prove the proposed control law ensures local
finite-time convergence of the angle errors. The finite-time stability of the nonlinear closed-
loop system is proved by using nonsmooth analysis tools (Filippov 1988, Clarke 1983, Paden
and Sastry 1987, Bacciotti and Ceragioli 1999, Cortés and Bullo 2005, Cortés 2008).

3) Collision avoidance is a particularly important issue for bearing-based formation control as
inter-vehicle distances are unmeasurable. We prove that the proposed control law guaran-
tees collision avoidance between any vehicles (no matter they are neighbors or not) given
sufficiently small initial angle errors.

The paper is organized as follows. Preliminaries to graph theory and nonsmooth analysis are
introduced in Section 2. Section 3 presents the problem formulation and the proposed control
law. The formation stability by the proposed control law is proved in Section 4. Section 5 shows
simulation results to verify the theoretical analysis. Conclusions are drawn in Section 6.

2 Preliminaries to Graph Theory and Nonsmooth Analysis

2.1 Notations

Given a symmetric positive semi-definite matrix A ∈ Rn×n, the eigenvalues of A are denoted
as 0 ≤ λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). Let 1 = [1, . . . , 1]T ∈ Rn, and I be the identity matrix
with appropriate dimensions. Denote | · | as the absolute value of a real number, and ‖ · ‖ as the
Euclidean norm of a vector. Denote Null(·) as the right null space of a matrix. Let [ · ]ij be the
entry at the ith row and jth column of a matrix, and [ · ]i be the ith entry of a vector. Given a
set S, denote S as its closure. For any angle α ∈ R,

R(α) =

[
cosα − sinα
sinα cosα

]
∈ R2×2 (1)

is a rotation matrix satisfying R−1(α) = RT(α) = R(−α). Geometrically, R(α) rotates a vector
in R2 counterclockwise through an angle α about the origin.

2.2 Graph Theory

A graph G = (V, E) consists of a vertex set V = {1, . . . , n} and an edge set E ⊆ V × V. If
(i, j) ∈ E , then i and j are called to be adjacent. The set of neighbors of vertex i is denoted as
Ni = {j ∈ V | (i, j) ∈ E}. A graph is undirected if each (i, j) ∈ E implies (j, i) ∈ E , otherwise
the graph is directed. A path from i to j in a graph is a sequence of distinct nodes starting with
i and ending with j such that consecutive vertices are adjacent. If there is a path between any
two vertices of graph G, then G is said to be connected. An undirected cycle graph is a connected
graph where every vertex has exactly two neighbors.

An incidence matrix of a directed graph is a matrix E with rows indexed by edges and columns
indexed by vertices1. Suppose (j, k) is the ith edge. Then the entry of E in the ith row and kth
column is 1, the one in the ith row and jth column is −1, and the others in the ith row are zero.
By definition, we have E1 = 0. If a graph is connected, the corresponding E has rank n− 1 (see
(Godsil and Royle 2001, Theorem 8.3.1)). Then Null(E) = span{1}.

1In some literature such as Godsil and Royle (2001), the rows of an incidence matrix are indexed by vertices and the columns
are indexed by edges.



August 5, 2013 23:41 International Journal of Control Manuscript

4 S. Zhao et al.

2.3 Nonsmooth Stability Analysis

Next we introduce some useful concepts and facts regarding discontinuous dynamic systems
(Filippov 1988, Clarke 1983, Paden and Sastry 1987, Bacciotti and Ceragioli 1999, Cortés and
Bullo 2005, Cortés 2008).

2.3.1 Filippov Differential Inclusion

Consider the dynamic system

ẋ(t) = f (x(t)) , (2)

where f : Rn → Rn is a measurable and essentially locally bounded function. The Filippov
differential inclusion (Filippov 1988) associated with the system (2) is

ẋ ∈ F [f ](x), (3)

where F [f ] : Rn → 2R
n

is defined by

F [f ](x) =
⋂
r>0

⋂
µ(S)=0

co {f (B(x, r) \ S)} . (4)

In (4), co denotes convex closure, B(x, r) denotes the open ball centered at x with radius r > 0,
and µ(S) = 0 means that the Lebesgue measure of the set S is zero. The set-valued map F [f ]
associates each point x with a set. Note F [f ](x) is multiple valued only if f(x) is discontinuous
at x.

A Filippov solution of (2) on [0, t1] ⊂ R is defined as an absolutely continuous function
x : [0, t1] → Rn that satisfies (3) for almost all t ∈ [0, t1]. If f(x) is measurable and essentially
locally bounded, the existence of Filippov solutions can be guaranteed (Cortés and Bullo 2005,
Lemma 2.5) (Cortés 2008, Proposition 3) though the uniqueness cannot. The interested reader
is referred to (Cortés 2008, p. 52) for the uniqueness conditions of Filippov solutions. A solution
is called maximal if it cannot be extended forward in time. A set Ω is said to be weakly invariant
(respectively strongly invariant) for (2), if for each x(0) ∈ Ω, Ω contains at least one maximal
solution (respectively all maximal solutions) of (2).

2.3.2 Generalized Gradient

Suppose V : Rn → R is a locally Lipschitz function. If V (x) is differentiable at x, denote
∇V (x) as the gradient of V (x) with respect to x. Let MV be the set where V (x) fails to be
differentiable. The generalized gradient (Clarke 1983, Cortés and Bullo 2005, Cortés 2008) of
V (x) is defined as

∂V (x) = co

{
lim

i→+∞
∇V (xi) | xi → x, xi /∈ S ∪MV

}
,

where co denotes convex hull and S is an arbitrary set of Lebesgue measure zero. The generalized
gradient is a set-valued map. If V (x) is continuously differentiable at x, then ∂V (x) = {∇V (x)}.

Given any set S ⊆ Rn, let Ln : 2R
n → 2R

n

be the set-valued map that associates S with the
set of least-norm elements of S. If S is convex, Ln(S) is singleton. In this paper, we only apply
Ln to generalized gradients which are always convex. For a locally Lipschitz function V (x),
Ln(∂V ) : Rn → Rn is called the generalized gradient vector field. The following fact (Cortés
2008, Proposition 8)

F [Ln (∂V (x))] = ∂V (x) (5)
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will be very useful in our work. A point x is called a critical point if 0 ∈ ∂V (x). For a critical
point x, it is obvious that Ln(∂V (x)) = {0}.

2.3.3 Set-valued Lie Derivative

The evolution of a locally Lipschitz function V (x) along the solutions to the differential inclu-
sion ẋ ∈ F [f ](x) can be characterized by the set-valued Lie derivative (Bacciotti and Ceragioli
1999, Cortés and Bullo 2005, Cortés 2008), which is defined by

L̃FV (x) =
{
` ∈ R | ∃ξ ∈ F [f ](x), ∀ζ ∈ ∂V (x), ξTζ = `

}
.

With a slight abuse of notation, we also denote L̃fV (x) = L̃FV (x). The set-valued Lie derivative

may be empty. When L̃FV (x) = ∅, we take max L̃FV (x) = −∞ (see (Bacciotti and Ceragioli
1999, Cortés and Bullo 2005, Cortés 2008)).

A function V : Rn → R is called regular (Cortés 2008, p. 57) at x if the right directional
derivative of V (x) at x exists and coincides with the generalized directional derivative of V (x)
at x. Note a locally Lipschitz and convex function is regular. The following two lemmas are
useful for proving the stability of discontinuous systems using nonsmooth Lyapunov functions.
The next result can be found in Shevitz and Paden (1994), Bacciotti and Ceragioli (1999), Cortés
and Bullo (2005).

Lemma 2.1: Let V : Rn → R be a locally Lipschitz and regular function. Suppose the initial
state is x0 and let Ω(x0) be the connected component of {x ∈ Rn | V (x) ≤ V (x0)} containing

x0. Assume the set Ω(x0) is bounded. If max L̃fV (x) ≤ 0 or L̃fV (x) = ∅ for all x ∈ Ω(x0), then
Ω(x0) is strongly invariant for (2). Let

Zf,V = {x ∈ Rn | 0 ∈ L̃fV (x)}. (6)

Then any solution of (2) starting from x0 converges to the largest weakly invariant set M
contained in Zf,V ∩ Ω(x0). Furthermore, if the set M is a finite collection of points, then the
limit of all solutions starting from x0 exists and equals one of them.

The next result can be found in Paden and Sastry (1987), Cortés and Bullo (2005).

Lemma 2.2: Let V : Rn → R be a locally Lipschitz and regular function. Suppose the initial
state is x0 and let S be a compact and strongly invariant set for (2). If max L̃fV (x) ≤ −κ < 0
almost everywhere on S \ Zf,V , then any solution of (2) starting at x0 ∈ S reaches Zf,V ∩ S in
finite time. The convergence time is upper bounded by (V (x0)−minx∈S V (x)) /κ.

3 Problem Formulation

In this section, we first describe the formation control problem that we are going to solve. Then
we propose a distributed bearing-based control law and derive the closed-loop system dynamics.

3.1 Control Objective

Consider n (n ≥ 3) vehicles in the plane. Denote the position of vehicle i as zi ∈ R2, i ∈
{1, . . . , n}. The dynamics of each vehicle is modeled as

żi = ui,

where ui ∈ R2 is the control input to be designed. The target formation considered in this paper
is an angle-constrained cyclic formation. The underlying information flow among the vehicles is
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Figure 1.: An illustration of cyclic formations.

described by an undirected cycle graph with fixed topology. By indexing the vehicles properly,
we can have Ni = {i− 1, i+ 1} for i ∈ {1, . . . , n}, which means vehicles i− 1 and i+ 1 are the
neighbors of vehicle i. Then vehicle i can obtain the bearings of vehicles i−1 and i+ 1 by using,
for example, a monocular camera. Note that the indices i − 1 and i + 1 are taken modulo n in
this paper. Let ei , zi+1 − zi. Then the unit-length vector

gi ,
ei
‖ei‖

characterizes the relative bearing between vehicles i and i+ 1 (see Figure 1). Thus the bearing
measurements obtained by vehicle i consist of −gi−1 and gi, which are the relative bearings of
vehicle i− 1 and vehicle i+ 1, respectively.

Denote θi ∈ [0, 2π) as the angle subtended by vehicles i− 1 and i+ 1 at vehicle i. The angle
θi is specifically defined in the following way: rotating −gi−1 counterclockwise through an angle
θi about vehicle i yields gi (see Figure 1). That can be mathematically expressed as

gi = R(θi)(−gi−1), (7)

where R(·) is the rotation matrix given in (1). By defining θi in (7), the angles θi and θi+1 are
on the same side of edge ei for all i ∈ {1, . . . , n}. As a result, the quantity

∑n
i=1 θi is invariant

to the positions of the vehicles because the sum of the interior angles of a polygon is constant.
Hence

∑n
i=1 θi(t) ≡

∑n
i=1 θi(0) for all t ∈ [0,+∞). The angle θi is specified as a constant value

θ∗i ∈ [0, 2π) in the target formation. The target angles {θ∗i }ni=1 should be feasible such that there
exist formations satisfying the angles constraints.

The problem we investigate in this paper is formally stated as below.

Assumption 3.1: In the initial formation, no two vehicles coincide with each other, i.e.,
zi(0) 6= zj(0) for all i 6= j.

Assumption 3.2: In the target formation, θ∗i 6= 0 and θ∗i 6= π for all i ∈ {1, . . . , n}.

Remark 1 : Assumption 3.2 means no three consecutive vehicles in the target formation are
collinear. The collinear case is a theoretical difficulty in many formation control problems (see,
for example, (Krick et al. 2009, Dörfler and Francis 2010, Huang et al.)). In practice, bearings
are usually measured by optical sensors such as cameras. Hence vehicle i would not be able
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to measure the bearings of its two neighbors simultaneously when θi = 0 due to line-of-sight
occlusion. On the other hand, the field-of-view of a monocular camera usually is less than
180 degree. Hence vehicle i would also not able to measure the bearings of its two neighbors
simultaneously when θi = π due to limited field-of-view. Thus Assumption 3.2 is reasonable from
the practical point of view.

Problem 3.3: Under Assumptions 3.1 and 3.2, design control input ui for vehicle i, i ∈
{1, . . . , n}, based only on the bearing measurements {−gi−1, gi} such that θi converges to θ∗i in
finite time. During the formation evolution, collision avoidance between any vehicles (no matter
they are neighbors or not) should be guaranteed.

3.2 Proposed Control Law

We next propose a control law to solve Problem 3.3. Define the angle error for vehicle i as

εi = cos θi − cos θ∗i = −gT
i gi−1 − cos θ∗i , (8)

where the second equality is due to −gT
i gi−1 = ‖gi‖‖gi−1‖ cos θi = cos θi. The proposed control

law for vehicle i is

ui = sgn(εi)(gi − gi−1), (9)

where

sgn(εi) =

1 if εi > 0
0 if εi = 0
−1 if εi < 0

.

For vector arguments, sgn(·) is defined component-wise. Inspired by the control law in (Basiri
et al. 2010), the proposed control law (9) has a clear geometric meaning: the control input vector
ui is along the bisector of the angle θi.

3.3 Error Dynamics

We next derive the error dynamics of the closed-loop system under control law (9).
Denote ε = [ε1, ..., εn]T ∈ Rn. Recall gi is defined as gi = ei/‖ei‖. Then the time derivative of

gi is

ġi =
ėi
‖ei‖

− ei
‖ei‖2

d‖ei‖
dt

=
ėi
‖ei‖

− ei
‖ei‖2

eT
i

‖ei‖
ėi =

1

‖ei‖

(
I − ei
‖ei‖

eT
i

‖ei‖

)
ėi =

1

‖ei‖
Piėi, (10)

where Pi = I − gigT
i . Matrix Pi plays an important role in the stability analysis in this paper.

Geometrically Pi is an orthogonal projection matrix which can orthogonally project any vector
onto the orthogonal compliment of gi. The algebraic properties of Pi are listed below.

Lemma 3.4: Matrix Pi satisfies:

(i) PT
i = Pi and P 2

i = Pi.
(ii) Pi is positive semi-definite.

(iii) Null(Pi) = span{gi}.

Proof

(i) The two properties are trivial to check.
(ii) For any x ∈ R2, since P 2

i = Pi and PT
i = Pi, we have xTPix = xTPT

i Pix = ‖Pix‖2 ≥ 0.
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(iii) First, it is easy to see Pigi = 0 and hence gi ∈ Null(Pi). Second, for any x ∈ R2, we have
Pix = x− (gT

i x)gi. Clearly Pix = 0 only if x is parallel to gi. Thus Null(Pi) = span{gi}.

�

Based on (10), we obtain the dynamics of ε as below.

Theorem 3.5 : The ε-dynamics under control law (9) is

ε̇ = −Asgn(ε), (11)

where A ∈ Rn×n and all of the entries of A are zero except

[A]i(i−1) =
1

‖ei−1‖
gT
i Pi−1gi−2,

[A]ii =
1

‖ei−1‖
gT
i Pi−1gi +

1

‖ei‖
gT
i−1Pigi−1,

[A]i(i+1) =
1

‖ei‖
gT
i−1Pigi+1, (12)

for all i ∈ {1, . . . , n}.

Proof Recall ei = zi+1 − zi. Then substituting control law (9) into ėi = żi+1 − żi yields

ėi = żi+1 − żi
= sgn(εi+1)(gi+1 − gi)− sgn(εi)(gi − gi−1)

= sgn(εi+1)gi+1 + sgn(εi)gi−1 − [ sgn(εi+1) + sgn(εi)] gi. (13)

Substituting (13) into (10) and using the fact that Pigi = 0 gives

ġi =
1

‖ei‖
Pi [ sgn(εi+1)gi+1 + sgn(εi)gi−1] .

Recall εi = −gT
i gi−1 − cos θ∗i as defined in (8) and θ∗i is constant. Then by the above equation

we have

ε̇i = −gT
i ġi−1 − gT

i−1ġi

= − 1

‖ei−1‖
gT
i Pi−1 [ sgn(εi)gi + sgn(εi−1)gi−2]− 1

‖ei‖
gT
i−1Pi [ sgn(εi+1)gi+1 + sgn(εi)gi−1]

= −[A]i(i−1) sgn(εi−1)− [A]ii sgn(εi)− [A]i(i+1) sgn(εi+1), (14)

where [A]i(i−1), [A]ii and [A]i(i+1) are given in (12). It is straightforward to see the matrix form
of (14) is (11). �

We next prove the matrix A in (11) is symmetric positive semi-definite.

Corollary 3.6: The matrix A in (11) is symmetric positive semi-definite. For any x =
[x1, . . . , xn]T ∈ Rn,

xTAx =

n∑
i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T Pi (gi+1xi+1 + gi−1xi) ≥ 0. (15)
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Proof In order to prove A is symmetric, we only need to prove [A](i+1)i = [A]i(i+1) for all i. By
changing the index i in [A]i(i−1) in (12) to i+ 1, we obtain

[A](i+1)i =
1

‖ei‖
gT
i+1Pigi−1.

It is clear that [A](i+1)i = [A]i(i+1) due to the symmetry of Pi. For any vector x = [x1, . . . , xn]T ∈
Rn, we have

xTAx =

n∑
i=1

[A]i(i−1)xixi−1 + [A]iix
2
i + [A]i(i+1)xixi+1

=

n∑
i=1

(
1

‖ei−1‖
gT
i Pi−1gi−2

)
xixi−1 +

n∑
i=1

(
1

‖ei−1‖
gT
i Pi−1gi

)
x2
i

+

n∑
i=1

(
1

‖ei‖
gT
i−1Pigi−1

)
x2
i +

n∑
i=1

(
1

‖ei‖
gT
i−1Pigi+1

)
xixi+1

=

n∑
i=1

(
1

‖ei‖
gT
i+1Pigi−1

)
xi+1xi +

n∑
i=1

(
1

‖ei‖
gT
i+1Pigi+1

)
x2
i+1

+

n∑
i=1

(
1

‖ei‖
gT
i−1Pigi−1

)
x2
i +

n∑
i=1

(
1

‖ei‖
gT
i−1Pigi+1

)
xixi+1

=

n∑
i=1

1

‖ei‖
(gi+1xi+1 + gi−1xi)

T Pi (gi+1xi+1 + gi−1xi) ≥ 0,

where the last inequality is due to the fact that Pi is positive semi-definite. �

4 Formation Stability Analysis

In this section we analyze the stability of the error dynamics (11). By employing a locally
Lipschitz Lyapunov function and the nonsmooth analysis tools introduced in Section 2.3, we
prove that the origin ε = 0 is locally finite-time stable with collision avoidance guaranteed. In
addition to the dynamics of ε, we also analyze the behaviors of the vehicle positions during
formation evolution.

We first consider the problem of collision avoidance. On one hand, Assumption 3.1 states that
no vehicles coincide with each other in the initial formation, i.e., zi(0) 6= zj(0) for any i 6= j.
On the other hand, control law (9) implies that ‖żi‖ ≤ ‖gi − gi−1‖ ≤ 2, which means that the
maximum speed of each vehicle is two. Therefore, any two vehicles are not able to collide with
each other (no matter they are neighbors or not) for all t ∈ [0, T ∗) where

T ∗ ,
mini 6=j ‖zi(0)− zj(0)‖

4
.

In the rest of the paper, we will only consider t ∈ [0, T ] with T < T ∗. We will prove that the
system can be stabilized within the finite time interval [0, T ].
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Consider the Lyapunov function

V (ε) =

n∑
i=1

|εi|, (16)

which is positive definite in ε. Note V (ε) is locally Lipschitz and convex. Hence V (ε) is also
regular.

Theorem 4.1 : For the error dynamics (11) and Lyapunov function (16), the Filippov differ-
ential inclusion is ε̇ ∈ −A∂V (ε). The set-valued Lie derivative is given by

L̃−A∂V V (ε) = {` ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε), −ζTAη = `}. (17)

When L̃−A∂V V (ε) 6= ∅, for any ` ∈ L̃−A∂V V (ε), there exsits η ∈ ∂V (ε) such that

` = −ηTAη ≤ 0. (18)

Proof Step 1: calculate the generalized gradient. By definition we have the generalized gradient
as

∂V (ε) = {η = [η1, . . . , ηn]T ∈ Rn | ηi = sgn(εi) if εi 6= 0 and

ηi ∈ [−1, 1] if εi = 0 for i ∈ {1, . . . , n}}.

Because |ηi| = |sgn(εi)| = 1 if εi 6= 0, we have the obvious but important fact that

‖η‖ ≥ 1, ∀η ∈ ∂V (ε), ∀ε 6= 0. (19)

Additionally, if εi 6= 0, then Ln({sgn(εi)}) = {sgn(εi)}; and if εi = 0, then Ln([−1, 1]) = {0} =
{sgn(0)}. Thus we have the following useful property

Ln(∂V (ε)) = {sgn(ε)}. (20)

Step 2: calculate the Filippov differential inclusion. Since ‖ei(t)‖ 6= 0 for all i and all t ∈ [0, T ],
the matrix A in (9) is continuous. Then by (Paden and Sastry 1987, Theorem 1, 5)), the Filippov
differential inclusion associated with the system (11) can be calculated as

ε̇ ∈ F [−Asgn(ε)] = −AF [ sgn(ε)]. (21)

Substituting (20) into (21) yields

F [ sgn(ε)] = F [Ln(∂V (ε))] = ∂V (ε),

where the last equality uses the fact (5). Thus the Filippov differential inclusion in (21) can be
rewritten as

ε̇ ∈ −A∂V (ε). (22)

Step 3: calculate the set-valued Lie derivative. The set-valued Lie derivative of V (ε) with
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respect to (22) is given by

L̃−A∂V V (ε) = {` ∈ R | ∃ξ ∈ −A∂V (ε), ∀ζ ∈ ∂V (ε), ζTξ = `}

= {` ∈ R | ∃η ∈ ∂V (ε), ∀ζ ∈ ∂V (ε), −ζTAη = `}.

The set L̃−A∂V V (ε) could be empty. When L̃−A∂V V (ε) 6= ∅, for any ` ∈ L̃−A∂V V (ε), there
exists η ∈ ∂V such that ` = −ζTAη for all ζ ∈ ∂V . In particular, by choosing ζ = η we have
` = −ηTAη ≤ 0. Note −ηTAη ≤ 0 is due to the fact that A is a positive semi-definite matrix as
shown in Lemma 3.6. Therefore, we have either L̃−A∂V V (ε) = ∅ or max L̃−A∂V V (ε) ≤ 0. �

4.1 Main Stability Result

We first introduce a number of useful results and then prove the local finite-time formation
stability.

Given an angle α ∈ R and a vector x ∈ R2, the angle between x and R(α)x is α. Thus for all
nonzero x ∈ R2, xTR(α)x > 0 when α ∈ (−π/2, π/2) (mod 2π); xTR(α)x = 0 when α = ±π/2
(mod 2π); and xTR(α)x < 0 when α ∈ (π/2, 3π/2) (mod 2π).

Lemma 4.2: Let g⊥i , R(π/2)gi. The properties of g⊥i are listed as below.

(i) ‖g⊥i ‖ = 1 and (g⊥i )Tgi = 0.
(ii) Pi = g⊥i (g⊥i )T.

(iii) For i 6= j, (g⊥i )Tgj = −(g⊥j )Tgi.

(iv) (g⊥i )Tgi−1 = sin θi, which implies (g⊥i )Tgi−1 > 0 if θi ∈ (0, π); and (g⊥i )Tgi−1 < 0 if
θi ∈ (π, 2π).

Proof See Appendix. �

Lemma 4.3: Let U , {x ∈ Rn : x 6= 0 and nonzero entries of x do not have the same sign}.
Suppose B ∈ Rn×n is a symmetric positive semi-definite matrix with λ1(B) = 0 and λ2(B) > 0.
If 1 = [1, . . . , 1]T ∈ Rn is an eigenvector associated with the zero eigenvalue of B, then

inf
x∈U

xTBx

xTx
=
λ2(B)

n
.

Remark 2 : By the definition of U , any x ∈ U should at least contain one positive entry and
one negative entry. If the nonzero entries of x are all positive or negative, then x /∈ U .

With the above preparation, we are ready to prove the formation stability based on Theo-
rem 4.1. Note if L̃−A∂V V (ε) = ∅, we have max L̃−A∂V V (ε) = −∞ (see Section 2.3.3). Hence we

need only to focus on the case of L̃−A∂V V (ε) 6= ∅.

Theorem 4.4 : Consider the set-valued Lie derivative given in (17). When L̃−A∂V V (ε) 6= ∅,
for any ` ∈ L̃−A∂V V (ε), there exsits η ∈ ∂V (ε) such that

` ≤ − 1∑n
i=1 ‖ei‖

ηTDTETEDη, (23)
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where

E =


1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−1 0 . . . 0 1

 ∈ Rn×n, D =


(g⊥1 )Tgn 0 0 . . . 0

0 (g⊥2 )Tg1 0 . . . 0
0 0 (g⊥3 )Tg2 . . . 0
...

...
...

. . .
...

0 0 . . . 0 (g⊥n )Tgn−1

 ∈ Rn×n.

(24)

Proof By (15), we can rewrite ` = −ηTAη in (18) as

` = −
n∑
i=1

1

‖ei‖
(gi+1ηi+1 + gi−1ηi)

T Pi (gi+1ηi+1 + gi−1ηi)

≤ − 1∑n
i=1 ‖ei‖

n∑
i=1

(gi+1ηi+1 + gi−1ηi)
T Pi (gi+1ηi+1 + gi−1ηi)

= − 1∑n
i=1 ‖ei‖

n∑
i=1

[
(gi+1ηi+1 + gi−1ηi)

T g⊥i

]2
(By Lemma 4.2(ii))

= − 1∑n
i=1 ‖ei‖

n∑
i=1

[
(g⊥i )Tgi+1ηi+1 + (g⊥i )Tgi−1ηi

]2

= − 1∑n
i=1 ‖ei‖

hTh, (25)

where

h =

 (g⊥1 )Tg2η2 + (g⊥1 )Tgnη1
...

(g⊥n )Tg1η1 + (g⊥n )Tgn−1ηn



=


(g⊥1 )Tgn (g⊥1 )Tg2 0 . . . 0

0 (g⊥2 )Tg1 (g⊥2 )Tg3 . . . 0
0 0 (g⊥3 )Tg2 . . . 0
...

...
...

. . .
...

(g⊥n )Tg1 0 . . . 0 (g⊥n )Tgn−1




η1

η2

η3
...
ηn


= EDη (26)

with E and D given in (24). The last equality of (26) uses the fact that (g⊥i )Tgi−1 = −(g⊥i−1)Tgi
as shown in Lemma 4.2(iii). Substituting (26) into (25) gives (23). �

Note that D is a diagonal matrix and E actually is an incidence matrix of a directed and
connected cycle graph. We now present the main stability result.

Theorem 4.5 : Under Assumptions 3.1 and 3.2, the equilibrium ε = 0 of system (11) is locally
finite-time stable. Collision avoidance between any vehicles (no matter they are neighbors or not)
can be locally guaranteed.

Proof Consider the time interval [0, T ] with T < T ∗. Then ‖ei(t)‖ 6= 0 and ‖ei(t)‖ 6= +∞ for
all t ∈ [0, T ]. We will prove that ε can converge to zero in the finite time interval [0, T ] if ε(0) is
sufficiently small.
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Let Ω(ε(0)) , {ε ∈ Rn | V (ε) ≤ V (ε(0))}. Since V (ε) =
∑n

i=1 |εi| = ‖ε‖1, the level set

Ω(ε(0)) is connected and compact. Because L̃−A∂V V (ε) = ∅ or max L̃−A∂V V (ε) ≤ 0 for any
ε ∈ Ω(ε(0)) as proved in Theorem 4.1, we have that Ω(ε(0)) is strongly invariant to (11) over
[0, T ] by Lemma 2.1.

Step 1: prove the nonzero entries of Dη do not have the same sign.
Denote δi = θi − θ∗i and δ = [δ1, . . . , δn]T ∈ Rn. Consider the case of ε 6= 0 and hence δ 6= 0.

Because
∑n

i=1 θi ≡
∑n

i=1 θ
∗
i , we have

∑n
i=1 δi ≡ 0. Thus the nonzero entries of δ do not have the

same sign if δ 6= 0. Let

wi ,
cos θi − cos θ∗i

θi − θ∗i
.

Then εi = wiδi and hence

ε = Wδ,

where W = diag{w1, . . . , wn} ∈ Rn×n. Since limθi→θ∗i wi = − sin θ∗i by L’Hôpital’s rule, the
equations εi = wiδi and ε = Wδ are always valid even when θi − θ∗i = 0.

Suppose V (ε(0)) is sufficiently small such that θi(0) is sufficiently close to θ∗i and hence θi, θ
∗
i ∈

(0, π) or θi, θ
∗
i ∈ (π, 2π) for all ε ∈ Ω(ε(0)). Then it is easy to see that wi < 0 if θi, θ

∗
i ∈ (0, π),

and wi > 0 if θi, θ
∗
i ∈ (π, 2π). On the other hand, recall (g⊥i )Tgi−1 > 0 when θi ∈ (0, π), and

(g⊥i )Tgi−1 < 0 when θi ∈ (π, 2π) as shown in Lemma 4.2(iv). Thus we have

(g⊥i )Tgi−1wi < 0

for all i ∈ {1, . . . , n}. Since [D]ii = (g⊥i )Tgi−1, the above inequality implies that the diagonal
entries of DW have the same sign. Thus as the nonzero entries in δ do not have the same sign,
the nonzero entries of DWδ = Dε do not have the same sign either. Furthermore, because
ηi = sgn(εi) if εi 6= 0, the nonzero entry εi has the same sign with ηi. As a result, the nonzero
entries of Dη do not have the same sign. Thus we have Dη ∈ U with U defined in Lemma 4.3.

Step 2: determine the negative upper bound of `.
Note E is an incidence matrix of a directed and connected cycle graph. By (Godsil and Royle

2001, Theorem 8.3.1), we have rank(E) = n − 1 and Null(ETE) = Null(E) = span{1}. Thus
inequality (23) implies

` ≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
‖Dη‖2 (By Lemma 4.3)

≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
λ1(D2)‖η‖2

≤ − 1∑n
i=1 ‖ei‖

λ2(ETE)

n
λ1(D2), (27)

where the last inequality uses the fact ‖η‖ ≥ 1 if ε 6= 0 as shown in (19).
Now we analyze the two terms,

∑n
i=1 ‖ei‖ and λ1(D2), in (27). (i) Over the finite time interval

[0, T ], the quantity
∑n

i=1 ‖ei‖ cannot go to infinity because the vehicle speed is finite. Hence there
exists a constant γ > 0 such that

∑n
i=1 ‖ei‖ ≤ γ. (ii) Since D is diagonal, we have λ1(D2) =

mini[D]2ii. At the equilibrium point ε = 0 (i.e., θi = θ∗i for all i), we have [D]ii = (g⊥i )Tgi−1 6= 0
because θ∗i 6= 0 or π as stated in Assumption 3.2. By continuity, we can still have [D]ii 6= 0 for all
ε ∈ Ω(ε(0)) if ε(0) is sufficiently small. Because Ω(ε(0)) is compact, there exists a lower bound
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β such that λ1(D2) ≥ β for all ε ∈ Ω(ε(0)). By (i) and (ii), inequality (27) can be rewritten as

` ≤ −βλ2(ETE)

γn
, −κ < 0, ∀ε ∈ Ω(ε(0)) \ {0}. (28)

Step 3: draw the stability conclusion.
If ε = 0 we have 0 ∈ L̃−A∂V V (ε) because of (17) and the fact that 0 ∈ ∂V (0); if ε 6= 0 we have

0 /∈ L̃−A∂V V (ε) because max L̃−A∂V V (ε) < 0 by (28). Thus by the definition (6), we have

Z−Asgn(ε),V (ε) = {0}. (29)

Based on (28), (29) and Lemma 2.2, any solution of (11) starting from ε(0) converges to ε = 0 in
finite-time, and the convergence time is upper bounded by V (ε(0))/κ. Thus if V (ε(0)) satisfies

V (ε(0))

κ
< T < T ∗, (30)

then the system can be stabilized within the time interval [0, T ] during which collision avoidance
between any vehicles can be guaranteed. �

While the local formation stability is proved in Theorem 4.5, the convergence region of the
equilibrium ε = 0 is not given. We next give a sufficient condition on ε(0) to guarantee the
convergence and collision avoidance.

Corollary 4.6: Let ∆i , min{θ∗i , |θ∗i − π|, 2π − θ∗i } where i ∈ {1, . . . , n}. There exists ξ such

that 0 < ξ < mini ∆i. Let ε̄i , min{| cos(θ∗i + ξ)− cos θ∗i |, | cos(θ∗i − ξ)− cos θ∗i |}, ζ , mini{θ∗i −
ξ, |π − θ∗i | − ξ, 2π − θ∗i − ξ} and γ ,

∑n
i=1 ‖ei(0)‖ + 4T . Under Assumptions 3.1 and 3.2, the

proposed control law guarantees the convergence of ε to zero in [0, T ] with collision avoidance
between any vehicles if

V (ε(0)) < min

{
min
i
ε̄i,

sin2 ζλ2(ETE)

γn
T

}
. (31)

Proof The proof of Theorem 4.5 requires ε(0) to be sufficiently small such that the following
three conditions hold: (i) λ1(D2) = mini[D

2]ii > 0 for all ε ∈ Ω(ε(0)); (ii) θ∗i and θ(t) for all
t ∈ [0, T ] are both in (0, π) or (π, 2π); (iii) V (ε(0))/κ < T . Note condition (iii) ensures the
collision avoidance.

Step 1: analyze condition (i). Recall [D]ii = (g⊥i )Tgi−1 = sin θi as proved in Lemma 4.2. Hence
mini[D

2]ii > 0 if θi(t) 6= 0 and θi(t) 6= π for all t ∈ [0, T ]. Thus condition (ii) implies condition (i).
Step 2: analyze condition (ii). Denote ∆i , min{θ∗i , |θ∗i −π|, 2π−θ∗i }. There exists ξ such that

0 < ξ < mini ∆i. Let ε̄i , min{| cos(θ∗i + ξ) − cos θ∗i |, | cos(θ∗i − ξ) − cos θ∗i |}. Then we have the
following sufficient condition: if ε(0) satisfies

V (ε(0)) < min
i
ε̄i, (32)

then condition (ii) holds. To see that, for any j ∈ {1, . . . , n}, we have |εj(t)| ≤
∑n

i=1 |εi(t)| =
V (ε(t)) ≤ V (ε(0)) < mini ε̄i ≤ ε̄j . Thus |εj(t)| < ε̄j for all t ∈ [0, T ]. Since the cosine function is
monotone in (0, π) or (π, 2π), we have |εj(t)| < ε̄j =⇒ |θi(t) − θ∗i | < ξ and hence condition (ii)
holds. It should be noted ε̄i 6= 0 and hence the set of ε(0) that satisfies (32) is always nonempty.

Further define ζ , mini{θ∗i −ξ, |π−θ∗i |−ξ, 2π−θ∗i −ξ}. Then |θi(t)−θ∗i | < ξ implies θi(t) > ζ,
|π − θi(t)| > ζ and 2π − θi(t) > ζ for all t ∈ [0, T ]. Thus [D2]ii = sin2 θi > sin2 ζ. Hence we have
β = sin2 ζ, where β is the lower bound of λ1(D2) as defined in the proof of Theorem 4.5.
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Step 3: analyze condition (iii). We first identify an upper bound of
∑n

i=1 ‖ei‖. Since the speed

of each vehicle is bounded above by two. It is easy to see
∑n

i=1 ‖ei(t)‖ ≤
∑n

i=1 ‖ei(0)‖+ 4T , γ
for all t ∈ [0, T ]. Therefore, we have κ defined in (28) as

κ =
sin2 ζλ2(ETE)

γn
,

substituting which into (30) yields

V (ε(0)) <
sin2 ζλ2(ETE)

γn
T.

Therefore, if V (ε(0)) satisfies (31), then the three conditions are satisfied. By Theorem 4.5, the
convergence of ε and collision avoidance between any vehicles can be guaranteed. �

Up to this point, the stability of the ε-dynamics has been proved. From control law (9), it
is trivial to see that żi = 0 if εi = 0. Hence each vehicle will converge to a finite stationary
finial position within finite time. Additionally, suppose the target formation is achieved at time
tf < V (ε(0))/κ. Since ‖żi‖ ≤ ‖gi − gi−1‖ ≤ 2, we have ‖zi(tf ) − zi(0)‖ ≤ 2tf ≤ 2V (ε(0))/κ.
Therefore, the final converged position zi(tf ) will be very close to its initial position zi(0) if the
initial angle error ε(0) is sufficiently small. In other words, the final converged formation will
not be far away from the initial formation given small initial angle errors.

5 Simulation Results

In this section, we present simulation results to illustrate the preceding theoretical analysis.
Figures 2, 3, 4 and 5 respectively show the formation control of three, four, five and eight
vehicles. Note the five point star shown in figure 3 is not a normal polygon. But this kind of
formations still have underlying graphs as cycles and hence can be stabilized by the proposed
control law. As shown in the simulation, the proposed control law can efficiently reduce the angle
errors and stabilize the formation in finite time. In our stability proof, we assume that the initial
angle error ε(0) should be sufficiently small such that θi(0) and θ∗i are in either (0, π) or (π, 2π).
However, as shown in figures 3 and 5, the formation can still be stabilized even if θi(0) and θ∗i
may be respectively in the two intervals (0, π) and (π, 2π). Hence the simulation suggests that
the attractive region of the target formation by the proposed control law is not necessarily small.

6 Conclusions

In this paper, we proposed a distributed control law to stabilize angle-constrained cyclic forma-
tions using bearing-only measurements. Compared to the existing work, the proposed control
law can handle cyclic formations with an arbitrary number of vehicles, and only requires the
sign information of the angle errors. By using nonsmooth stability analysis tools, we proved that
the formation is locally finite-time stable with collision avoidance guaranteed.

Compared to the conventional position-based formation control, bearing-based formation con-
trol does possess a number of unique features. For example, the formation shape and the forma-
tion scale are uncontrollable by bearing-based formation control since the inter-vehicle distances
are uncontrollable. But these limitations of bearing-based formation control can be all well over-
comed in the future. For example, the formation shape can be specified by assigning a rigid
underlying graph to a formation. To control the scale of a formation, we can introduce some
leader vehicles whose inter-vehicle distances are controllable. Then given appropriate underlying
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(b) Angle error and Lyapunov function

Figure 2.: Control results by the proposed control law with n = 3, θ∗1 = θ∗2 = 45 deg and θ∗3 = 90 deg.
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(b) Angle error and Lyapunov function

Figure 3.: Control results by the proposed control law with n = 4 and θ∗1 = · · · = θ∗4 = 90 deg.
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Figure 4.: Control results by the proposed control law with n = 5 and θ∗1 = · · · = θ∗5 = 36 deg.
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Figure 5.: Control results by the proposed control law with n = 8 and θ∗1 = · · · = θ∗8 = 135 deg.

sensing graph, the formation scale can be controlled by tuning the distances among the leader
vehicles. These topics are very interesting and challenging directions for future research.

Here are some other interesting topics for future research on bearing-based formation control.
First, this paper only considers formations with cycle graphs. One of our immediate research
plans is to extend the work in this paper to the cases with more complicated graphs. The
extension will be non-trivial, but the structure of the stability analysis in this paper is believed
to be useful for future research on more complicated cases. Second, we assume the underlying
graph is undirected in this paper. It may be more practical for the underlying sensing graphs to
be directed. Finally, the vehicle dynamics is assumed as a single integrator in this work. More
complicated vehicle dynamics and system uncertainties need to be considered in the future.

Appendix

Proof [Proof of Lemma 4.2]

(i) The two equations are obvious.
(ii) Denote Gi = [gi, g

⊥
i ] ∈ R2×2. It is clear that Gi is an orthogonal matrix satisfying GT

i Gi =
GiG

T
i = I. Hence we have

gig
T
i + g⊥i (g⊥i )T = GiG

T
i = I.

Thus g⊥i (g⊥i )T = I − gigT
i = Pi.

(iii) (g⊥i )Tgj = gT
i R

T(π/2)gj = gT
i R(−π/2)gj = gT

i R(−π)R(π/2)gj = gT
i R(−π)g⊥j =

gT
i (−I)g⊥j = −(g⊥j )Tgi.

(iv) By the definition of θi, we have gi = R(θi)(−gi−1) and hence gi−1 = −R(−θi)gi. Then

(g⊥i )Tgi−1 = −gT
i R
(
−π

2

)
R(−θi)gi

= −gT
i R
(
−π

2
− θi

)
gi

= −‖gi‖
∥∥∥R(−π

2
− θi

)
gi

∥∥∥ cos
(
−π

2
− θi

)
= sin θi.
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Then it is straightforward to see the rest results in Lemma 4.2(iv).

�

Proof [Proof of Lemma 4.3] By orthogonally projecting x ∈ U to 1 and the orthogonal comple-
ment of 1, we decompose x as

x = x0 + x1,

where x0 ∈ Null(B) and x1 ⊥ Null(B). Let ϕ be the angle between 1 and x. Then we have

xTBx = xT
1 Bx1

≥ λ2(B)‖x1‖2

= λ2(B) sin2 ϕ‖x‖2. (33)

By the definition of U , any x in U would not be in span{1}. That means ϕ 6= 0 or π and
hence sinϕ 6= 0. We next identify the positive infimum of sinϕ. The open set U is enclosed
by the hyper-planes [x]i = 0 with i ∈ {1, . . . , n}. And 1 is isolated from any x ∈ U by the
hyper-planes. Denote the boundary of U as ∂U . Then we have infx∈U ϕ = minx∈∂U ∠(x,1) and
supx∈U ϕ = maxx∈∂U ∠(x,1). Denote pi ∈ Rn as the orthogonal projection of 1 on the hyper-
plane [x]i = 0. Then minx∈∂U ∠(x,1) = ∠(pi,1) and maxx∈∂U ∠(x,1) = ∠(−pi,1). Note the ith
entry of pi is zero and the others are one. It can be calculated that cos∠(±pi,1) = ±

√
n− 1/

√
n

and hence sin∠(±pi,1) = 1/
√
n. Thus

inf
x∈U

sinϕ =
1√
n
,

substituting which into (33) yields

inf
x∈U

xTBx

xTx
=
λ2(B)

n
.

�
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