Optimal Placement of Sensor Networks for Target Localization and Tracking

Shiyu Zhao

Department of Mechanical Engineering
University of California, Riverside
January 29, 2016
1. What the problem is intuitively

2. What the problem is mathematically

3. How to solve the problem

4. Other Interesting Properties

5. Conclusions
Outline

1. What the problem is intuitively

2. What the problem is mathematically

3. How to solve the problem

4. Other Interesting Properties

5. Conclusions
Problem Description

Cooperative target localization:

- Objective: localize the target
- Measurement: partial information of the target such as bearing or range
- Cooperative localization: sensors must collaborate to localize the target
Problem Description

Cooperative target localization:

- **Objective**: localize the target
- **Measurement**: partial information of the target such as bearing or range
- **Cooperative localization**: sensors must collaborate to localize the target
Problem Description
Problem Description
Problem Description
Problem Description

Numerical simulation: localization error and angle
Problem Description

Numerical simulation: localization error and angle
• **Sensor Types**

 - **Bearing-only**: Doğançay and Hmam [2008], Bishop et al. [2010]

 - **Range-only**: Martínez and Bullo [2006], Jourdan and Roy [2006], Bishop et al. [2010], Morales and Kassas [2015]

 - **Received-Signal-Strength (RSS)**: Bishop and Jensfelt [2009]

 - **Other Types**: ...
Literature Review

- **Sensor Types**
 - **Bearing-only**: Doğançay and Hmam [2008], Bishop et al. [2010]
 - **Range-only**: Martínez and Bullo [2006], Jourdan and Roy [2006], Bishop et al. [2010], Morales and Kassas [2015]
 - **Received-Signal-Strength (RSS)**: Bishop and Jensfelt [2009]
 - **Other Types**: ...

- **Space Dimension**
 - **2D Space**: Zhang [1995], Martínez and Bullo [2006], Jourdan and Roy [2006], Bishop et al. [2007], Doğançay [2007], Doğançay and Hmam [2008], Bishop and Jensfelt [2009], Isaacs et al. [2009], Bishop et al. [2010], Morales and Kassas [2015]
 - **3D Space**: Moreno-Salinas et al. [2011]

In our work
- Sensor type: bearing-only, range-only, and RSS-based sensors
- Space dimension: both 2-D and 3-D
Literature Review

• **Sensor Types**
 - **Bearing-only**: Doğançay and Hmam [2008], Bishop et al. [2010]
 - **Range-only**: Martínez and Bullo [2006], Jourdan and Roy [2006], Bishop et al. [2010], Morales and Kassas [2015]
 - **Received-Signal-Strength (RSS)**: Bishop and Jensfelt [2009]
 - **Other Types**: ...

• **Space Dimension**
 - **2D Space**: Zhang [1995], Martínez and Bullo [2006], Jourdan and Roy [2006], Bishop et al. [2007], Doğançay [2007], Doğançay and Hmam [2008], Bishop and Jensfelt [2009], Isaacs et al. [2009], Bishop et al. [2010], Morales and Kassas [2015]
 - **3D Space**: Moreno-Salinas et al. [2011]

In our work

- Sensor type: bearing-only, range-only, and RSS-based sensors
- Space dimension: both 2-D and 3-D
1 What the problem is intuitively

2 What the problem is mathematically

3 How to solve the problem

4 Other Interesting Properties

5 Conclusions
The measurement model for sensor i is

- **Bearing-only sensor:** $h(s_i - p) = s_i - p$
- **Range-only sensor:** $h(s_i - p) = \|s_i - p\|$
- **RSS-based sensor:** $h(s_i - p) = \ln \|s_i - p\|$

g_i is the measurement vector from sensor i to the target p. s_i is the sensor location and p is the target location.
The measurement model for sensor i is

$$z_i = h(s_i - p) + v_i$$
The measurement model for sensor i is

$$z_i = h(s_i - p) + v_i$$

- **Bearing-only sensor**: $h(s_i - p) = \frac{s_i - p}{\|s_i - p\|}$
- **Range-only sensor**: $h(s_i - p) = \|s_i - p\|$
- **RSS-based sensor**: $h(s_i - p) = \ln \|s_i - p\|$
Optimality Metrics

Fisher Information Matrix (FIM):

\[F = \sum_{i=1}^{n} \left[\frac{\partial h}{\partial p} \right]^T \Sigma_i^{-1} \frac{\partial h}{\partial p} \]

- \(\Sigma_i \): how accurate the measurement is
- \(\frac{\partial h}{\partial p} \): how much useful information the measurement has
Optimality Metrics

Fisher Information Matrix (FIM):

\[
F = \sum_{i=1}^{n} \left(\frac{\partial h}{\partial p} \right)^T \Sigma_i^{-1} \frac{\partial h}{\partial p}
\]

- \(\Sigma_i\): how accurate the measurement is
- \(\frac{\partial h}{\partial p}\): how much useful information the measurement has

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Measurement model</th>
<th>FIM</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing-only</td>
<td>(h(r_i) = \frac{r_i}{|r_i|})</td>
<td>(F = \sum_{i=1}^{n} c_i^2 (I_d - g_i g_i^T))</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
</tr>
<tr>
<td>Range-only</td>
<td>(h(r_i) = |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i})</td>
</tr>
<tr>
<td>RSS</td>
<td>(h(r_i) = \ln |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
</tr>
</tbody>
</table>
Common optimality metrics:

- **T-Optimality:** maximize $\text{tr } F = \sum_{i=1}^{d} \lambda_i$
- **A-Optimality:** minimize $\text{tr } F^{-1} = \sum_{i=1}^{d} 1/\lambda_i$
- **D-Optimality:** maximize $\text{det } F = \prod_{i=1}^{d} \lambda_i$

Interpretation:
- Maximize the information obtained by the sensors
- Minimize the volume of the uncertainty ellipsoid

Limitation: not applicable to 3-D cases
Optimality Metrics

Common optimality metrics:

- **T-Optimality**: maximize $\text{tr } F = \sum_{i=1}^{d} \lambda_i$
- **A-Optimality**: minimize $\text{tr } F^{-1} = \sum_{i=1}^{d} 1/\lambda_i$
- **D-Optimality**: maximize $\text{det } F = \prod_{i=1}^{d} \lambda_i$

Interpretation:

- Maximize the information obtained by the sensors

Limitation: not applicable to 3-D cases
Optimality Metrics

Common optimality metrics:

- **T-Optimality**: maximize $\text{tr } F = \sum_{i=1}^{d} \lambda_i$
- **A-Optimality**: minimize $\text{tr } F^{-1} = \sum_{i=1}^{d} 1/\lambda_i$
- **D-Optimality**: maximize $\det F = \prod_{i=1}^{d} \lambda_i$

Interpretation:

- Maximize the information obtained by the sensors
- Minimize the volume of the uncertainty ellipsoid $\frac{4}{3} \pi \frac{1}{\sqrt[3]{\prod_{i=1}^{d} \lambda_i}}$

Limitation: not applicable to 3-D cases
Optimality Metrics

Common optimality metrics:

- **T-Optimality**: maximize $\text{tr } F = \sum_{i=1}^{d} \lambda_i$
- **A-Optimality**: minimize $\text{tr } F^{-1} = \sum_{i=1}^{d} 1/\lambda_i$
- **D-Optimality**: maximize $\det F = \prod_{i=1}^{d} \lambda_i$

Interpretation:

- Maximize the information obtained by the sensors
- Minimize the volume of the uncertainty ellipsoid $\frac{4}{3} \pi \frac{1}{\sqrt[3]{\prod_{i=1}^{d} \lambda_i}}$

Limitation: not applicable to 3-D cases
The new optimality metric:

$$\min \| F - \bar{\lambda}I_d \|^2$$
A New Optimality Metric

The new optimality metric:

$$\min \|F - \bar{\lambda}I_d\|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j$$
The new optimality metric:
\[
\min \|F - \bar{\lambda}I_d\|^2
\]

Justify the new metric:
\[
\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d
\]
A New Optimality Metric

The new optimality metric:

$$\min \| F - \bar{\lambda}I_d \|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d,$$
The new optimality metric:
\[
\min \| F - \bar{\lambda} I_d \|^2
\]

Justify the new metric:

\[
det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d,
\]

where

\[
det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda}
\]
A New Optimality Metric

The new optimality metric:

$$\min \| F - \bar{\lambda} I_d \|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d,$$

where

$$\det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda}$$
$$\iff F = \bar{\lambda} I_d$$
A New Optimality Metric

The new optimality metric:

\[\min \| F - \bar{\lambda}I_d \|^2 \]

Justify the new metric:

\[\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d, \]

where

\[\det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda} \]
\[\iff F = \bar{\lambda}I_d \]
\[\iff \| F - \bar{\lambda}I_d \|^2 = 0 \]
A New Optimality Metric

The new optimality metric:

$$\min \| F - \bar{\lambda}I_d \|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \equiv \bar{\lambda}^d,$$

where

$$\det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda} \iff F = \bar{\lambda}I_d \iff \| F - \bar{\lambda}I_d \|^2 = 0$$

Connection between the new and old metrics:

- 2-D case: $$\| F - \bar{\lambda}I_2 \|^2 = -2 \det F + 2\bar{\lambda}^2 \text{ (equivalent)}$$
A New Optimality Metric

The new optimality metric:

$$\min \|F - \bar{\lambda}I_d\|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d,$$

where

$$\det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda} \iff F = \bar{\lambda}I_d \iff \|F - \bar{\lambda}I_d\|^2 = 0$$

Connection between the new and old metrics:

- **2-D case:** $\|F - \bar{\lambda}I_2\|^2 = -2 \det F + 2\bar{\lambda}^2$ (equivalent)
- **3-D case:**
 - **case 1:** $\det F = \bar{\lambda}^3$ iff $\|F - \bar{\lambda}I_3\| = 0$ (equivalent)
A New Optimality Metric

The new optimality metric:

$$\min \| F - \bar{\lambda} I_d \|^2$$

Justify the new metric:

$$\det F = \prod_{j=1}^{d} \lambda_j \leq \left(\frac{1}{d} \sum_{j=1}^{d} \lambda_j \right)^d \triangleq \bar{\lambda}^d,$$

where

$$\det F = \bar{\lambda}^d \iff \lambda_1 = \cdots = \lambda_d = \bar{\lambda}$$

$$\iff F = \bar{\lambda} I_d$$

$$\iff \| F - \bar{\lambda} I_d \|^2 = 0$$

Connection between the new and old metrics:

- **2-D case:** $\| F - \bar{\lambda} I_2 \|^2 = -2 \det F + 2\bar{\lambda}^2$ (equivalent)
- **3-D case:**
 - **case 1:** $\det F = \bar{\lambda}^3$ iff $\| F - \bar{\lambda} I_3 \| = 0$ (equivalent)
 - **case 2:** $\det F < \bar{\lambda}^3$ and $\| F - \bar{\lambda} I_d \| > 0$ (not equivalent)
Problem Statement

For bearing-only, range-only, and RSS sensors

\[
\min \| F - \bar{\lambda} I_d \|^2 \iff \min \| G \|^2
\]

where

\[
G = \sum_{i=1}^{n} c_i^2 g_i g_i^T
\]
Problem Statement

For bearing-only, range-only, and RSS sensors

\[
\min \| F - \bar{\lambda} I_d \|^2 \iff \min \| G \|^2
\]

where

\[
G = \sum_{i=1}^{n} c_i^2 \hat{g}_i g_i^T
\]
Problem Statement

For bearing-only, range-only, and RSS sensors

\[
\min \| F - \bar{\lambda}I_d \|^2 \iff \min \| G \|^2
\]

where

\[
G = \sum_{i=1}^{n} c_i^2 g_i g_i^T
\]

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Measurement model</th>
<th>FIM</th>
<th>Coefficient</th>
<th>Optimality criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing-only</td>
<td>(h(r_i) = \frac{r_i}{|r_i|})</td>
<td>(F = \sum_{i=1}^{n} c_i^2 (I_d - g_i g_i^T))</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T |^2)</td>
</tr>
<tr>
<td>Range-only</td>
<td>(h(r_i) = |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T |^2)</td>
</tr>
<tr>
<td>RSS</td>
<td>(h(r_i) = \ln |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T |^2)</td>
</tr>
</tbody>
</table>
Outline

1. What the problem is intuitively
2. What the problem is mathematically
3. How to solve the problem
4. Other Interesting Properties
5. Conclusions
Necessary and Sufficient Condition for Optimal Placement

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Measurement model</th>
<th>FIM</th>
<th>Coefficient</th>
<th>Optimality criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing-only</td>
<td>(h(r_i) = \frac{r_i}{|r_i|})</td>
<td>(F = \sum_{i=1}^{n} c_i^2 (I_d - g_i g_i^T))</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \left</td>
</tr>
<tr>
<td>Range-only</td>
<td>(h(r_i) = |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i})</td>
<td>(\min \left</td>
</tr>
<tr>
<td>RSS</td>
<td>(h(r_i) = \ln |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \left</td>
</tr>
</tbody>
</table>
Necessary and Sufficient Condition for Optimal Placement

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Measurement model</th>
<th>FIM</th>
<th>Coefficient</th>
<th>Optimality criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing-only</td>
<td>(h(r_i) = \frac{r_i}{|r_i|})</td>
<td>(F = \sum_{i=1}^{n} c_i^2 (I_d - g_i g_i^T))</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
</tr>
<tr>
<td>Range-only</td>
<td>(h(r_i) = |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
</tr>
<tr>
<td>RSS</td>
<td>(h(r_i) = \ln |r_i|)</td>
<td>(F = \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
<td>(c_i = \frac{1}{\sigma_i |r_i|})</td>
<td>(\min \sum_{i=1}^{n} c_i^2 g_i g_i^T)</td>
</tr>
</tbody>
</table>

\(c_i \) is large when \(\sigma_i \) is small (the measurement is accurate) or \(\|r_i\| \) is small.
Necessary and Sufficient Condition for Optimal Placement

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Measurement model</th>
<th>FIM</th>
<th>Coefficient</th>
<th>Optimality criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing-only</td>
<td>$h(r_i) = \frac{r_i}{|r_i|}$</td>
<td>$F = \sum_{i=1}^{n} c_i^2 (I_d - g_i g_i^T)$</td>
<td>$c_i = \frac{1}{\sigma_i |r_i|}$</td>
<td>$\min \left| \sum_{i=1}^{n} c_i^2 g_i g_i^T \right|^2$</td>
</tr>
<tr>
<td>Range-only</td>
<td>$h(r_i) = |r_i|$</td>
<td>$F = \sum_{i=1}^{n} c_i^2 g_i g_i^T$</td>
<td>$c_i = \frac{1}{\sigma_i}$</td>
<td>$\min \left| \sum_{i=1}^{n} c_i^2 g_i g_i^T \right|^2$</td>
</tr>
<tr>
<td>RSS</td>
<td>$h(r_i) = \ln |r_i|$</td>
<td>$F = \sum_{i=1}^{n} c_i^2 g_i g_i^T$</td>
<td>$c_i = \frac{1}{\sigma_i |r_i|}$</td>
<td>$\min \left| \sum_{i=1}^{n} c_i^2 g_i g_i^T \right|^2$</td>
</tr>
</tbody>
</table>

c_i is large when σ_i is small (the measurement is accurate) or $\|r_i\|$ is small

Definition (Irregularity)

- The weights for n sensors: $c_1 \geq c_2 \geq \cdots \geq c_n > 0$
- Dimension: $d = 2, 3$

Denote k_0 as the smallest nonnegative integer k for which

$$c_{k+1}^2 \leq \frac{1}{d - k} \sum_{i=k+1}^{n} c_i^2.$$

The integer k_0 is called the irregularity of $\{c_i\}_{i=1}^{n}$ with respect to d.

14 / 25
Regular VS Irregular

Example (Regular)
\[
\{c_i\}_{i=1}^4 = \{1, 1, 1, 1\} \quad \& \quad d = 3
\]

• \(k = 0\):
 \(\sum_{i=1}^{n} c_{2i} = 1\)

Irregularity = 0

Example (Irregular)
\[
\{c_i\}_{i=1}^4 = \{10, 1, 1, 1\} \quad \& \quad d = 3
\]

• \(k = 0\):
 \(\sum_{i=1}^{n} c_{2i} = 10\)>

Irregularity = 1

Example (Irregular)
\[
\{c_i\}_{i=1}^4 = \{10, 10, 1, 1\} \quad \& \quad d = 3
\]

• \(k = 0\):
 \(\sum_{i=1}^{n} c_{2i} = 10\)>

Irregularity = 2

Intuition
A sequence is irregular when certain element is much larger than the others.
Regular VS Irregular

Example (Regular)

\[\{c_i\}_{i=1}^4 = \{1, 1, 1, 1\} \] & \(d = 3:\)

- \(k = 0: 1 = c_1^2 \leq \frac{1}{d} \sum_{i=1}^n c_i^2 = 1.3\)

Irregularity=0
Regular VS Irregular

Example (Regular)

\(\{c_i\}_{i=1}^{4} = \{1, 1, 1, 1\} \) & \(d = 3 \):

- \(k = 0 \): \(1 = c_1^2 \leq \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 1.3 \)

Irregularity=0

Example (Irregular)

\(\{c_i\}_{i=1}^{4} = \{10, 1, 1, 1\} \) & \(d = 3 \):

- \(k = 0 \): \(100 = c_1^2 > \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 34.3 \)
- \(k = 1 \): \(1 = c_2^2 \leq \frac{1}{d-1} \sum_{i=2}^{n} c_i^2 = 1.5 \)

Irregularity=1

Intuition

A sequence is irregular when certain element is much larger than the others.
Regular VS Irregular

Example (Regular)

\[
\{c_i\}_{i=1}^{4} = \{1, 1, 1, 1\} \quad \text{&} \quad d = 3:
\]

- \(k = 0\): \(1 = c_1^2 \leq \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 1.3\)

Irregularity=0

Example (Irregular)

\[
\{c_i\}_{i=1}^{4} = \{10, 10, 1, 1\} \quad \text{&} \quad d = 3:
\]

- \(k = 0\): \(100 = c_1^2 > \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 67.3\)
- \(k = 1\): \(100 = c_2^2 > \frac{1}{d-1} \sum_{i=2}^{n} c_i^2 = 51\)
- \(k = 2\): \(1 = c_2^2 \leq \frac{1}{d-2} \sum_{i=3}^{n} c_i^2 = 2\)

Irregularity=2

Example (Irregular)

\[
\{c_i\}_{i=1}^{4} = \{10, 1, 1, 1\} \quad \text{&} \quad d = 3:
\]

- \(k = 0\): \(100 = c_1^2 > \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 34.3\)
- \(k = 1\): \(1 = c_2^2 \leq \frac{1}{d-1} \sum_{i=2}^{n} c_i^2 = 1.5\)

Irregularity=1

Intuition

A sequence is irregular when certain element is much larger than the others.
Regular VS Irregular

Example (Regular)

\[\left\{ c_i \right\}_{i=1}^4 = \{1, 1, 1, 1\} \quad \& \quad d = 3: \]

- \(k = 0: \ 1 = c_1^2 \leq \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 1.3 \)

Irregularity=0

Example (Irregular)

\[\left\{ c_i \right\}_{i=1}^4 = \{10, 10, 1, 1\} \quad \& \quad d = 3: \]

- \(k = 0: \ 100 = c_1^2 > \frac{1}{d} \sum_{i=1}^{n} c_i^2 = 67.3 \)
- \(k = 1: \ 100 = c_2^2 > \frac{1}{d-1} \sum_{i=2}^{n} c_i^2 = 51 \)
- \(k = 2: \ 1 = c_2^2 \leq \frac{1}{d-2} \sum_{i=3}^{n} c_i^2 = 2 \)

Irregularity=2

Intuition

A sequence is irregular when certain element is much larger than the others.
Necessary and Sufficient Condition for Optimal Placement

Theorem (Regular optimal placement)

In \mathbb{R}^d with $d = 2$ or 3, if the positive coefficient sequence $\{c_i\}_{i=1}^n$ is regular, then the objective function $\|G\|^2$ satisfies

$$\|G\|^2 \geq \frac{1}{d} \left(\sum_{i=1}^n c_i^2 \right)^2.$$

The lower bound of $\|G\|^2$ is achieved if and only if

$$\sum_{i=1}^n c_i^2 g_i g_i^T = \frac{1}{d} \sum_{i=1}^n c_i^2 I_d.$$
Necessary and Sufficient Condition for Optimal Placement

Theorem (Regular optimal placement)

In \mathbb{R}^d with $d = 2$ or 3, if the positive coefficient sequence $\{c_i\}_{i=1}^n$ is regular, then the objective function $\|G\|^2$ satisfies

$$\|G\|^2 \geq \frac{1}{d} \left(\sum_{i=1}^n c_i^2 \right)^2.$$

The lower bound of $\|G\|^2$ is achieved if and only if

$$\sum_{i=1}^n c_i^2 g_i g_i^T = \frac{1}{d} \sum_{i=1}^n c_i^2 I_d.$$

Theorem (Irregular optimal placement)

In \mathbb{R}^d with $d = 2$ or 3, if the positive coefficient sequence $\{c_i\}_{i=1}^n$ is irregular with irregularity as $k_0 \geq 1$, without loss of generality $\{c_i\}_{i=1}^n$ can be assumed to be a non-increasing sequence, and then the objective function $\|G\|^2$ satisfies

$$\|G\|^2 \geq \sum_{i=1}^{k_0} c_i^4 + \frac{1}{d - k_0} \left(\sum_{i=k_0+1}^n c_i^2 \right)^2.$$

The lower bound of $\|G\|^2$ is achieved if and only if

$$\{g_i\}_{i=1}^n = \{g_i\}_{i=1}^{k_0} \cup \{g_i\}_{i=k_0+1}^n,$$

where $\{g_i\}_{i=1}^{k_0}$ is an orthogonal set, and $\{g_i\}_{i=k_0+1}^n$ forms a regular optimal placement in the $(d - k_0)$-dimensional orthogonal complement of $\{g_i\}_{i=1}^{k_0}$.
Necessary and Sufficient Condition for Optimal Placement

Theorem (Regular optimal placement)

In \mathbb{R}^d with $d = 2$ or 3, if the positive coefficient sequence $\{c_i\}_{i=1}^n$ is regular, then the objective function $\|G\|_2^2$ satisfies

$$\|G\|_2^2 \geq \frac{1}{d} \left(\sum_{i=1}^{n} c_i^2 \right)^2.$$

The lower bound of $\|G\|_2^2$ is achieved if and only if

$$\sum_{i=1}^{n} c_i^2 g_i g_i^T = \frac{1}{d} \sum_{i=1}^{n} c_i^2 I_d.$$

Theorem (Irregular optimal placement)

In \mathbb{R}^d with $d = 2$ or 3, if the positive coefficient sequence $\{c_i\}_{i=1}^n$ is irregular with irregularity as $k_0 \geq 1$, without loss of generality $\{c_i\}_{i=1}^n$ can be assumed to be a non-increasing sequence, and then the objective function $\|G\|_2^2$ satisfies

$$\|G\|_2^2 \geq \sum_{i=1}^{k_0} c_i^4 + \frac{1}{d - k_0} \left(\sum_{i=k_0+1}^{n} c_i^2 \right)^2.$$

The lower bound of $\|G\|_2^2$ is achieved if and only if

$$\{g_i\}_{i=1}^{n} = \{g_i\}_{i=1}^{k_0} \cup \{g_i\}_{i=k_0+1}^{n},$$

where $\{g_i\}_{i=1}^{k_0}$ is an orthogonal set, and $\{g_i\}_{i=k_0+1}^{n}$ forms a regular optimal placement in the $(d - k_0)$-dimensional orthogonal complement of $\{g_i\}_{i=1}^{k_0}$.

Observation

An irregular optimal sensor placement problem can be converted to a regular optimal sensor placement in a lower dimensional space.
Necessary and Sufficient Condition for Optimal Placement

2-D example:

\{c_1, c_2, c_3\} = \{1, 1, 1\}
Necessary and Sufficient Condition for Optimal Placement

2-D example:

\{c_1, c_2, c_3\} = \{1, 1, 1\} \quad \{c_1, c_2, c_3\} = \{10, 1, 1\}
Necessary and Sufficient Condition for Optimal Placement

2-D example:

\{c_1, c_2, c_3\} = \{1,1,1\}

\{c_1, c_2, c_3\} = \{10,1,1\}

3-D example:

\{c_1, c_2, c_3, c_4\} = \{1,1,1,1\}
Necessary and Sufficient Condition for Optimal Placement

2-D example:

\{c_1, c_2, c_3\} = \{1, 1, 1\} \quad \{c_1, c_2, c_3\} = \{10, 1, 1\}

3-D example:

\{c_1, c_2, c_3, c_4\} = \{1, 1, 1, 1\} \quad \{c_1, c_2, c_3, c_4\} = \{10, 1, 1, 1\}
Necessary and Sufficient Condition for Optimal Placement

2-D example:

\[\{c_1, c_2, c_3\} = \{1,1,1\} \]

\[\{c_1, c_2, c_3\} = \{10,1,1\} \]

3-D example:

\[\{c_1, c_2, c_3, c_4\} = \{1,1,1,1\} \]

\[\{c_1, c_2, c_3, c_4\} = \{10,1,1,1\} \]

\[\{c_1, c_2, c_3, c_4\} = \{10,10,1,1\} \]
Outline

1. What the problem is intuitively
2. What the problem is mathematically
3. How to solve the problem
4. Other Interesting Properties
5. Conclusions
Equally-weighted sensor networks:

Figure: Examples of 2D equally-weighted optimal placements
Other Interesting Properties

Equally-weighted sensor networks:

Figure: Examples of 2D equally-weighted optimal placements

Figure: Examples of 3D equally-weighted optimal placements
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
Theorem (Distributed construction)

The union of multiple disjoint regular optimal placements in \mathbb{R}^d ($d = 2$ or 3) is still a regular optimal placement in \mathbb{R}^d.
\[V = \|G\|^2/4. \] Gradient descent control:

\[\dot{r}_i = -\left(\frac{\partial V}{\partial r_i} \right)^T = -P_i G g_i. \]
Autonomous Optimal Sensor Deployment

\[V = \|G\|^2/4. \] Gradient descent control:

\[\dot{r}_i = - \left(\frac{\partial V}{\partial r_i} \right)^T = -P_i G g_i. \]

Regular placements:
$$V = \|G\|^2/4.$$ Gradient descent control:

$$\dot{r}_i = -\left(\frac{\partial V}{\partial r_i}\right)^T = -P_i G g_i.$$

Regular placements:

Irregular placements:

(g) $n = 3$, $k_0 = 1$

(h) $n = 4$, $k_0 = 1$

(i) $n = 4$, $k_0 = 2$
(a) Trajectory
Autonomous Optimal Sensor Deployment

(a) Trajectory

(b) Estimation error
1. What the problem is intuitively
2. What the problem is mathematically
3. How to solve the problem
4. Other Interesting Properties
5. Conclusions
Conclusions

Contributions:

1. Optimality metrics:
 \[\max \operatorname{det} F \Rightarrow \min \| F - \bar{\lambda} I \|_2 \Rightarrow \min \| G \|_2 \]

2. Necessary and sufficient conditions:
 - Regular
 - Irregular

3. Other properties:
 - Equally-weighted sensors
 - Distributed construction

Future work:

1. Control strategy
2. Multiple targets or target area
Conclusions

Contributions:

1. Optimality metrics

\[
\max \det F \implies \min \|F - \bar{\lambda}I_d\|^2 \implies \min \|G\|^2
\]
Conclusions

Contributions:

1. Optimality metrics

\[
\text{max det } F \implies \min \| F - \lambda I_d \|^2 \implies \min \| G \|^2
\]

2. Necessary and sufficient conditions
 - Regular
 - Irregular

Future work:

1. Control strategy
2. Multiple targets or target area
Conclusions

Contributions:

1. Optimality metrics

\[
\max \det F \implies \min \|F - \bar{\lambda}I_d\|^2 \implies \min \|G\|^2
\]

2. Necessary and sufficient conditions
 - Regular
 - Irregular

3. Other properties
 - Equally-weighted sensors
 - Distributed construction
Conclusions

Contributions:

1. Optimality metrics

\[
\max \det F \implies \min \|F - \bar{\lambda} I_d\|^2 \implies \min \|G\|^2
\]

2. Necessary and sufficient conditions
 - Regular
 - Irregular

3. Other properties
 - Equally-weighted sensors
 - Distributed construction

Future work:

1. Control strategy
Conclusions

Contributions:

1. Optimality metrics

\[
\max \det F \implies \min \|F - \bar{\lambda}I_d\|^2 \implies \min \|G\|^2
\]

2. Necessary and sufficient conditions
 - Regular
 - Irregular

3. Other properties
 - Equally-weighted sensors
 - Distributed construction

Future work:

1. Control strategy
2. Multiple targets or target area
The End

Q & A

J. T. Isaacs, D. J. Klein, and J. P. Hespanha. Optimal sensor placement for

