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Numerical simulation: localization error and angle
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In our work
e Sensor type: bearing-only, range-only, and RSS-based sensors
e Space dimension: both 2-D and 3-D




What the problem is mathematically



Sensor Measurement Model




Sensor Measurement Model

The measurement model for sensor 7 is
z; = h(s; — p) +v;
——

measurement measurement measurement
function noise



Sensor Measurement Model

The measurement model for sensor 7 is
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function noise
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e Range-only sensor: h(s; —p) = ||s; — p|

e RSS-based sensor: h(s; —p) =In|ls; — p||

o Bearing-only sensor: h(s; — p)
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Common optimality metrics:

o T-Optimality: maximize tr ' = "¢ |\,

e A-Optimality: minimize tr F~1 = "¢ 1/),

e D-Optimality: maximize det ' = H;’:] i
Interpretation:

e Maximize the information obtained by the sensors

e Minimize the volume of the uncertainty ellipsoid §m——
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Limitation: not applicable to 3-D cases
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¢; is large when o; is small (the measurement is accurate) or ||r;|| is small

Definition (Irregularity)

® The weights for n sensors: ¢1 >c2 > --->c¢cp >0
® Dimension: d = 2,3

Denote ko as the smallest nonnegative integer k for which

The integer ko is called the irregularity of {c;} ; with respect to d.
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Intuition

A sequence is irregular when certain
element is much larger than the others
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Theorem (Regular optimal placement)
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coefficient sequence {c;}?_, is regular,
then the objective function |G||? satisfies

n 2
1
o> 2 (324
=1

The lower bound of ||G||? is achieved if
and only if

n 1 n
Z c?gigiT =3 chld.
i=1 i=1

Observation

Theorem (Irregular optimal placement)

In R% with d = 2 or 3, if the positive coefficient
sequence {c;}!"_, is irregular with irregularity as
ko > 1, without loss of generality {c;}?_, can be
assumed to be a non-increasing sequence, and then
the objective function ||G||? satisfies

2
n

|G||2>Zc +d P Yo e

i=ko+1

The lower bound of ||G||? is achieved if and only if
k
{9i}iz1 = {gi}igl U {gi}?:kg+l7

where {gz}fgl is an orthogonal set, and
{gi}?:k0+1 forms a regular optimal placement in
the (d — ko)-dimensional orthogonal complement of

k
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An irregular optimal sensor placement problem can be converted to a regular
optimal sensor placement in a lower dimensional space 6/%




Necessary and Sufficient Condition for Optimal Placement

2-D example:

{c1,c2,c3}={1,1,1}




Necessary and Sufficient Condition for Optimal Placement

2-D example:

{c1,c2,c3}={1,1,1} {c1,c2,c3}={10,1,1}




Necessary and Sufficient Condition for Optimal Placement

2-D example:

{c1,c2,c3}={1,1,1} {c1,c2,c3}={10,1,1}

3-D example:

{cl,c2,c3,c4}={1,1,1,1}




Necessary and Sufficient Condition for Optimal Placement

2-D example:

{c1,c2,c3}={1,1,1} {c1,c2,c3}={10,1,1}

3-D example:

{Cl,CZ,C3,C4}={l,1,1,1} {cl,cZ,c3,c4}:{10,1,1,1}




Necessary and Sufficient Condition for Optimal Placement

2-D example:

{c1,c2,c3}={1,1,1} {c1,c2,c3}={10,1,1}

.- g
3-D example:
{Cl,CZ,C3,C4}={l,1,1,1} {cl,cZ,c3,c4}:{10,1,1,1} {Cl,CZ,C3,C4}={lO,10,1,1}
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Figure: Examples of 3D equally-weighted optimal placements
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Autonomous Optimal Sensor Deployment

V = ||G||?/4. Gradient descent control:

T
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Autonomous Optimal Sensor Deployment

(a) Trajectory



Autonomous Optimal Sensor Deployment

x(m)

y(m)

z(m)
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Estimated with moving sensors
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(b) Estimation error
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Conclusions

Contributions:
@ Optimality metrics

max det F' = min || F — A4||> = min ||G||?

® Necessary and sufficient conditions

e Regular
o |rregular

© Other properties

e Equally-weighted sensors
e Distributed construction

Future work:
@ Control strategy
® Multiple targets or target area



The End

Q& A
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