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Air-to-Air Visual Detection of Micro-UAVs:
An Experimental Evaluation of Deep Learning

Ye Zheng, Zhang Chen, Dailin Lv, Zhixing Li, Zhenzhong Lan, Shiyu Zhao

Abstract—This paper studies the problem of air-to-air visual
detection of micro unmanned aerial vehicles (UAVs) by monoc-
ular cameras. This problem is important for many applications
such as vision-based swarming of UAVs, malicious UAV detection,
and see-and-avoid systems for UAVs. Although deep learning
methods have exhibited superior performance in many object
detection tasks, their potential for UAV detection has not been
well explored. As the first main contribution of this paper, we
present a new dataset, named Det-Fly, which consists of more
than 13,000 images of a flying target UAV acquired by another
flying UAV. Compared to the existing datasets, the proposed
one is more comprehensive in the sense that it covers a wide
range of practical scenarios with different background scenes,
viewing angles, relative distance, flying altitude, and lightning
conditions. The second main contribution of this paper is to
present an experimental evaluation of eight representative deep-
learning algorithms based on the proposed dataset. To the best
of our knowledge, this is the first comprehensive experimental
evaluation of deep learning algorithms for the task of visual
UAV detection so far. The evaluation results highlight some key
challenges in the problem of air-to-air UAV detection and suggest
potential ways to develop new algorithms in the future. The
dataset is available at https://github.com/Jake-WU/Det-Fly.

Index Terms—UAV detection; Visual detection; Deep learning

I. INTRODUCTION

ISUAL detection of micro unmanned aerial vehicles
V (UAVs) has attracted increasing attention in recent years
since it is the core technology for many important applications.
For example, visual detection of UAVs is essential to achieve
vision-based UAV swarming systems, where each UAV needs
to use onboard cameras to measure the relative motion of their
neighboring UAVs [1]. In addition, the hostile use of micro
UAVs has become a serious threat to public safety and personal
privacy nowadays. Visual detection of malicious micro UAVs
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Fig. 1. A DJI M210 platform with XT2 camera was used to acquire images
of a flying target UAV (DJI Mavic).

[2], [3] is a key technology for developing civilian UAV
defense systems. Another application is see-and-avoid among
UAVs [4]. In particular, as more and more commercial UAVs
occupy low-altitude airspace for the purpose of, for example,
parcel delivery, how to ensure UAVs to detect other UAVs
timely to navigate safely without colliding with each other is
an important problem.

The detection of UAVs could be classified into two ap-
plication scenarios. The first is ground-to-air, where cameras
are placed on the ground to detect flying UAVs. The second
scenario is air-to-air, where a flying UAV uses its onboard
cameras to detect other flying UAVs (see, for example, Fig. 1).
This paper focuses on the air-to-air scenario. In addition,
although different types of sensors could be used to detect
micro UAVs such as vision, radar [5], and acoustic sensors [6],
visual sensors are one of the few suitable options for the air-
to-air scenario due to the extremely limited onboard payload
of micro UAVs. This paper focuses on the most widely used
RGB monocular cameras.

While ground-to-air UAV detection has attracted increasing
research attention in recent years (see Section II for a review),
the air-to-air case, which is even more challenging, is far
from being well solved up to now. In many ground-to-air
UAV detection tasks, ground cameras are usually stationary or
moving slowly [7], and the background of target UAV images
is a clear or cloudy sky. As a comparison, in an air-to-air UAV
detection task, a flying UAV may observe the target UAV from
top or side view angles. As a result, the background of the
target UAV image could be extremely complex scenes such as
urban and natural fields (see Fig. 2 for example). Moreover,
since the onboard camera is flying dynamically, the appearance
of the target UAV such as its shape, scale, and color may vary
dramatically. Since micro UAVs are small in size, their images
may be extremely small (e.g., less than 10x 10 pixels), which
thus increases the difficulty of detection.

The existing approaches for UAV detection could be clas-
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sified into two streams. The first stream is the conventional
approaches that are composed of two-step operations. The
first step is to extract object features represented by, for
example, Histogram of Oriented Gradients (HOG) or Scale
Invariant Feature Transform (SIFT). The second step is to
classify the features using machine-learning algorithms such
as Support Vector Machine (SVM) or Adaboost. The second
stream is the deep-learning-based approaches, which directly
outputs detection results using end-to-end artificial neural
networks. In contrast to the conventional approaches, which
use hand-craft features, deep-learning-based approaches rely
on deep convolutional neural network (DCNN) features and
consequently have a stronger capability to represent complex
objects. However, the disadvantage of using DCNN is that
it has high computational requirements and it requires large
datasets to train. A detailed review of the existing approaches
is given in Section II.

Although deep learning methods have exhibited superior
performance in many object detection tasks, their potential for
UAV detection has not been well explored or evaluated up to
now (see Section II-B for a review). As the first step towards
establishing a robust approach to air-to-air UAV detection,
this paper proposes a new dataset of micro UAV images and
presents a comprehensive experimental evaluation of eight
representative deep-learning algorithms. It is worth noting that
we focus on the case where the target UAVs are known
in advance such that a dataset of them could be built up
for the purpose of training. This case applies to tasks like
vision-based cooperative control multi-UAV systems, which
is our main motivation for UAV detection. Although the
algorithms exhibit a certain generalization ability to detect
unknown UAVs with similar appearances, other measures such
as building up datasets of multiple types of UAVs or target
motion sensing [2] may be required.

The novelty and contribution of this work are detailed as
follows.

First, this paper presents a dataset of 13,271 images of a
flying target UAV (DJI Mavic) acquired by another flying UAV
(DJI M210). Compared to the existing air-to-air datasets, the
proposed one is more systematically designed and compre-
hensive in the sense that it covers a wide range of practical
scenarios with different background scenes, viewing angles,
relative distance, flying altitude, and lightning conditions. In
particular, the environmental background scenes vary from
simple ones such as clear sky to complex ones such as
mountain, field, and urban. The relative distance of the target
UAV varies from 10 m to 100 m, and the flight altitude from
20 m to 110 m. Since lightning conditions are also important
factors in flying UAV detection, the time for data collection
varies from morning to evening in different periods of the day.
The dataset also covers some challenging scenarios with, for
example, strong light, motion blur, and partial target occlusion.

Second, this paper presents an experimental evaluation of
eight representative deep-learning algorithms based on our
proposed dataset: RetinaNet [8], SSD [9], YOLOv3 [10], FPN
[11], Faster R-CNN [12], RefineDet [13], Grid R-CNN [14],
and Cascade R-CNN [15]. To the best of our knowledge, this is
the first comprehensive evaluation of deep learning algorithms

for UAV detection tasks. The evaluation results suggest that the
overall performance of Cascade R-CNN and Grid R-CNN is
superior compared to the others. We also evaluated the impact
of some key factors such as background scene complexity,
relative viewing angles, and relative distance on the detection
performance.

The proposed dataset could be used as a benchmark to eval-
uate different UAV detection algorithms (either conventional
or deep-learning-based). The evaluation results highlight some
key challenges in the problem of air-to-air UAV detection and
suggest potential ways to develop new algorithms in the future.

II. RELATED WORK

This section gives a review of the existing studies on visual
detection of micro UAVs. We only consider the case of using
monocular cameras.

A. Conventional approaches

The conventional techniques adopted by existing UAV de-
tection works can be classified into two categories. The first
is to use feature extraction methods to obtain target features,
and then use a discriminant classifier to determine the target
location. The second is to detect moving objects in the image,
and then use a generative classifier to determine whether the
moving object is the target.

In particular, the work in [16] adopts Haar wavelet based
AdaBoost to detect UAVs. The approach is demonstrated by
flight experiments to be effective in the simple case of the
cloudy sky background. The work in [17] proposes a cascade
approach to detect UAVs based on Haar-like features, local
binary patterns, and HOG. Since it is a combination of differ-
ent detection methods, this approach has a low running speed.
HOG feature is adopted in [18] for training classical cascade
detectors. Although this approach significantly reduces the
number of repeated detections by applying non-maximum
suppression, the detection accuracy drops rapidly in the case
of partial occlusion. Motivated by moving object detection
in see-and-avoid tasks, the work in [19] utilizes optical flow
matching to integrate spatial and temporal information to
track moving targets. This approach requires high-precision
motion compensation. The optical flow method is also used
to locate moving objects in [20]. The consequent step is to
recognize the moving objects by template matching, which is
not robust to variance in the target appearance. The work in
[21] also adopts template matching as well as morphological
filtering for UAV detection. A real-time detection and tracking
strategy is proposed in [22] where the object of interest can
be automatically detected in a saliency map by computing
background connectivity cue at each frame. The work in [23]
proposes a pyramidal Lucas-Kanade (PLK) algorithm to detect
motion targets in a team of cooperative UAVs. The work in
[24] detects moving target by extracting geometry features and
dynamic features in the segmentation image, and classifies
them by discriminant function derived from the Bayesian
theorem.

In summary, although UAV detection has been studied
based on many conventional approaches, these approaches are
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Fig. 2. Samples of images in the dataset and the corresponding detection results by the eight algorithms. The dataset contains four types of background scenes:
sky, mountain, field, and urban. The detected areas by the eight algorithms are given right of each sample image with color-coded boxes. If the corresponding
area is blank, it means that the algorithm does not detect any target UAV in this image.

effective only in restricted scenarios where, for example, the
background scene is relatively simple or the target appearance
does not vary considerably.

B. Deep-learning approaches

Although the methods based on deep learning have made
great progress in the field of general object detection, they
have not been well explored in the field of UAV detection. Up
to now, there are only few studies on visual detecting UAVs by
deep learning algorithms. For example, an approach to detect
flying objects using motion compensation is proposed in [25],
where the features of moving objects are classified by CNNs.
This approach leads to high average detection precision,
whereas the motion compensation step requires high-precision
measurement of the motion of the camera. The work in [26]
combines SegNet with bottom-hat morphological processing
for detecting large-size aircraft in the air. This approach could
detect aircraft within a long-range up to 2800 m, but the
accuracy is as low as 13.4%. Although some other studies
such as [27], [28] also adopt deep learning algorithms such

as YOLOV2 to detect UAVs, the performance of different
representative deep learning algorithms for UAV detection
have not been evaluated or compared.

C. Existing datasets for UAV detection

Up to now, there are very few comprehensive datasets for
the purpose of training deep learning algorithms for UAV
detection. The dataset in [29] comprises 20 video sequences
and each of them has about 4000 752x480 gray frames.
The image of the flying target UAV is captured by a camera
mounted on another UAV in indoor and outdoor environments.
The dataset proposed in [30] consists of two sub-datasets. The
first is a Public-Domain drone dataset that contains 30 video
sequences with different drone models captured in indoor and
outdoor environments. The other one is the USC drone dataset
that contains 30 video clips of the same target UAV. This
dataset is acquired on the USC campus and the background
of most samples is a clean or cloudy sky, which is relatively
simple compared to our proposed dataset. In order to increase
the number of images in the dataset, the authors of the USC
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dataset developed a model-based automatic data augmentation
method to paste clipped drone model images into background
images. Although the size of data can be expanded in this way,
the work in [31] shows that networks trained based on such
kind of data may not be significantly improved by the aug-
mentation. Very recently, a new dataset, named MIDGARD,
was presented in [32]. This dataset contains different kinds of
backgrounds and varying lighting conditions. It also proposed
a new method for automatic annotation by using their previous
work of UltraViolet Direction And Ranging [33]. A detailed
comparison between MIDGARD and our dataset is given in
Section V.

III. THE PROPOSED DATASET

The proposed dataset, named Det-Fly, consists of 13,271
images of a target micro UAV (DJI Mavic). Each image has
3840 x 2160 pixels. Some images of the dataset are sampled
from videos at 5 FPS and the others are captured from desired
relative poses. All the images are manually annotated by
professionals. Some sample images are given in Fig. 2. The
dataset is available at hrtps://github.com/Jake-WU/Det-Fly.

Det-Fly covers a wide range of scenarios including differ-
ent viewing angles, background scenes, relative ranges, and
lighting conditions. In particular, Det-Fly involves four types
of environmental background: sky, urban, field, and mountain
(see Fig. 2). Each type of environmental background occupies
nearly the same proportion (about 20%-30%) of the entire
dataset. In terms of relative viewing angles, Det-Fly can
be split into three categories: front view, top view, bottom
view. The data proportion of the three viewing angles are,
respectively, 36.4% (front view), 32.5% (top view), and 31.1%
(bottom view).

In terms of the image size of the target UAV, the statistics
data given in Fig. 3 shows that a large portion of the target
UAV images in the dataset are small. In particular, nearly half
of them are smaller than 5% of the entire image size. When
the height and width of a target UAV image are smaller than
10% of the entire image, it could be regarded as a small
object, whose detection is a well-known challenging task.
In addition, since the lighting conditions are also important
factors in flying UAV detection, the time of image collection
varies from morning to evening in different periods of a day.
The dataset also covers some challenging scenarios with such
as strong/weak lighting (10.8%), motion blur (11.2%), and
partial target occlusion (0.8%).

Some remarks about the proposed dataset are given below.
First, each image in this dataset only contains one single
target UAV. However, the algorithms trained based on the
dataset could naturally detect multiple UAVs, which is re-
quired by vision-based UAV swarming. Second, although the
dataset covers a wide range of environmental scenarios, it is
impossible to cover all possible scenarios. The primary pur-
pose for establishing the dataset is to evaluate different deep
learning algorithms. If one is interested in implementing a
deep-learning approach in practice in a specific environmental
scenario, the dataset should be adjusted to cover either the
specific environment where the UAV detection is performed
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Fig. 3. Statistical data of the target UAV size in our dataset. The blue points
correspond to the UAV images whose width and height are less than 5% of
the image size. The orange points represent the data that the sizes are less
than 10% of the image size. The remaining red points are samples greater
than 10%. Since the attitude of the camera may frequently change during
flight, there are various height-width ratios of bounding boxes.

or more environmental scenarios to enhance the generalization
ability. Third, this dataset only covers one single type of UAV
(DJI Mavic). If one is interested in detecting more types of
UAVs, other measures such as building up datasets of multiple
types of UAVs or target motion sensing [2] may be required.

IV. EXPERIMENTAL SETUP

In this paper, we finely tune and evaluate eight classic deep-
learning based object detection methods: SSD [9], RetinaNet
[8], YOLOV3 [10], RefineDet [13], Faster R-CNN [12], FPN
[11], Cascade R-CNN [15], and Grid R-CNN [14]. These
methods generate similar performance in terms of small-scale
objects on COCO dataset in which mean Average Precision
(mAP) is used as an evaluation metric.

According to the types of detection algorithms, the selected
methods can be divided into two categories: one-stage net-
works and two-stage networks. A one-stage network does
classification and regression directly on the feature map to
achieve fast object detection. Among the selected methods,
SSD, RetinaNet, YOLOv3, and RefineDet are one-stage net-
works. A two-stage network consists of a region proposal
network (RPN) that proposes several candidate boxes and a
classification and regression network that achieves recognition
and localization for a specified object. Among the selected
methods, Faster R-CNN, FPN, Cascade R-CNN, and Grid R-
CNN are two-stage networks.

The primary hyper-parameters of the algorithms imple-
mented in our work are given in Table I. Since ResNet achieves
state-of-the-art performance on ImageNet, we adopt it as the
backbone in most of the algorithms. Generally, ResNet has two
versions for common use, named ResNet-50 and ResNet-101.
In our work, we choose ResNet-50 over ResNet-101 because it
is lite and suitable to be implemented in embedded computers
on micro UAVs. Since DarkNet-53 is widely used as the
backbone of YOLOvV3 and it exhibits similar performance as
ResNet-50 [10], [34], we choose DarkNet-53 for YOLOv3
in our experiments. The original optimizers are used. The
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TABLE I
THE HYPERPARAMETERS IN OUR IMPLEMENTATION OF THE EIGHT ALGORITHMS.

hyperparameter backbone optimizer input_size LR momentum | weight_decay iteration
Cascade R-CNN ResNet-50 SGD [640,640] le-2 0.9 le-4 6,652
FPN ResNet-50 SGD [600,600] le-3 0.9 le-5 49,993
Faster R-CNN ResNet-50 SGD [1000,600] le-2 0.9 le-4 6,652
Grid R-CNN ResNet-50 SGD [600,600] 2e-2 0.9 le-4 46,564
RefineDet ResNet-50 SGD [320,320] le-3 0.9 S5e-4 30,000
RetinaNet ResNet-50 SGD [600,600] 2e-4 0.9 le-4 13,304
SSD512 ResNet-50 SGD [512,512] le-3 0.9 Se-4 46,564
YOLOV3 DarkNet-53 Adam [416,416] le-3 0.9 Se-4 7,000

learning rate (LR), momentum, weight decay, and iteration
are finely tuned based on extensive tests.

Our experiments are implemented on a computer with an
Intel i7, 32GB RAM, Nvidia RTX 2080Ti rather than an
embedded computer in order to reduce training time. We train
the models based on 70% of the images, in which 10% is
evaluated for validation, and test them based on the remaining
30% images. In addition, we use non-maximum suppression
(NMS) to remove overlapping bounding boxes, so that an
object is only contained in one bounding box. As an important
parameter in NMS to evaluate the overlapping rate of predicted
bounding boxes, IoU is defined as

_area(Op, N Og)
~area(0p,UOy)’

In our experiments, the IoU threshold is set to 0.5.

In the training stage, we set the training epoch as eight and
save model parameters in each epoch. If the training loss and
validation loss remain stable we conclude that the detector
is well trained. Otherwise, we modify the setting epoch and
resume training until the model is well trained.

Precision is a metric to evaluate missing detection. The
calculation of Precision in this paper is the same as the ones in
general visual object detection, which traverses all predicted
boxes to calculate Precision. If the UAV is successfully de-
tected, then the predicted bounding box will be regarded as
true positive (TP). Otherwise, it will be regarded as a false
positive (FP). Precision is defined as

TP

TP+ FP’

Recall is a metric to measure false detection and defined as
TP

TP+ FN’

The performance of an object detector can be evaluated by
PrecisionxRecall (P-R) curve, which considers false detec-
tions with respect to missing detections for varying thresholds.
However, P-R curves are often zigzag curves going up and
down and tend to cross each other frequently, it is usually not
easy to compare different curves (different detectors) in the
same plot. Instead, numerical metrics called Average Precision
(AP) can help us compare different detectors. AP is the area
under a curve (AUC) of the PrecisionxRecall curve. It is easy
to make a comparison between areas. Thus, we use AP as the
evaluation metrics.

Precision =

Recall =

V. EVALUATIONS RESULTS
A. Average Precision

The APs of the eight algorithms are shown in Table II.
Grid R-CNN achieves the best performance (82.4%) among
all detectors, while RefineDet the worst (69.5%). Among two-
stage networks, Cascade R-CNN achieves the best perfor-
mance (79.4%), whereas Faster R-CNN, which is the main
framework of two-stage networks in our experiments, achieves
the worst (70.5%). For one-stage networks, SSD512 (78.7%)
and RetinaNet (77.9%) both perform well, whereas YOLOv3
achieves only 72.3%. Although one-stage networks sacrifice
detection performance to obtain high implementation effi-
ciency, SSD512 achieves the same AP as FPN, which suggests
that SSD512 could be a good alternative for tasks requiring
high computational efficiency.

To further evaluate the performance of the algorithms, we
split the testing set into two sets. One set, named Det-Fly-
Simple, contains images with a relatively simple background
(e.g., clean sky), short sensor-target range, and low flight
speed. The other set, named Det-Fly-Complex, consists of a
more complex background (e.g., complex urban) and small
target size. Both datasets contribute about 50% images of
the entire dataset. The evaluation results on Det-Fly-Simple
suggest that the two-stage networks, Cascade R-CNN and Grid
R-CNN, achieve the highest AP (more than 82.0%) among
all the eight networks. Among one-stage networks, RetinaNet
and SSD512 achieve the best performance (nearly 81.0%).
Except for RefineDet and YOLOv3, the performance of other
algorithms is higher than 80.0%. Compared with Dez-Fly-
Simple, the detection performance of most of the algorithms
on Det-Fly-Complex drops sharply by nearly an average of
5.0%, due to the high complexity of Det-Fly-Complex. The
mean Precision of the algorithms could only achieve 74.4%. In
particular, Grid R-CNN still achieves the best performance and
it is also the only one exceed 80.0%. RetinaNet and SSD512,
which have similar performance, still perform best within one-
stage networks. In general, two-stage networks perform a little
better than one-stage networks in this test.

In summary, Grid R-CNN and Cascade R-CNN show stable
and superior performance compared to the others in all evalu-
ation scenarios. One stage networks, SSD512 and RetinaNet,
also show stable and good performance. Since they could
achieve higher computational speed, SSD512 and RetinaNet
may be a good choice for tasks with limited computational
resources.
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TABLE II
THE AP OF THE EIGHT ALGORITHMS TESTED ON DET-FLY (%).

dataset Cascade R-CNN RetinaNet RefineDet FPN Faster R-CNN Grid R-CNN SSD512 YOLOv3
Det-Fly 79.4 77.9 69.5 78.7 70.5 82.4 78.7 72.3
160 1w One-stage networks TABLE III
= Two-stage networks THE AP FOR DIFFERENT ENVIRONMENTAL BACKGROUND SCENES (%)
140 1
1204 algorithms F U S M
g Cascade R-CNN | 67.9 | 64.7 | 93.1 | 84.8
g 100 4 FPN 719 | 704 | 87.2 | 71.7
5 ol Faster R-CNN 64.1 | 489 | 87.6 | 789
9 Grid R-CNN 78.0 | 76.1 | 89.1 | 83.5
S 60 RefineDet 704 | 447 | 842 | 772
£ RetinaNet 73.7 | 67.5 | 89.5 | 77.3
1 SSD512 73.6 | 65.6 | 92.3 | 78.7
204 YOLOV3 69.1 | 584 | 83.5 | 79.6
mean AP 71.1 | 62.0 | 83.3 | 80.0
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Fig. 4. The inference time of all algorithms in our experiment.

B. Network attributes affecting UAV detection

The inference speed of the algorithms is an important aspect
for practical implementation, especially in onboard embedded
systems. Figure 4 shows the average inference time of the eight
deep learning algorithms in our experiments. As can be seen,
one-stage networks have a faster inference speed than two-
stage networks. Although Grid R-CNN archives the best AP
performance among all algorithms, it is also the most time-
consuming one. The inference time of YOLOv3 (32ms) is
nearly one-fifth of that of Grid R-CNN (157ms). If compu-
tational efficiency is the priority for an application, YOLOv3
is recommended since it is the fastest and its performance
is better than the other two algorithms (RefineDet and Faster
R-CNN) as shown in Table II.

All the compared models except YOLOv3 were imple-
mented with the ResNet-50 backbone network in our experi-
ments. Although ResNet-50 has already been run in real-time
on some embedded devices, one may be interested in the
performance with a even lighter backbone network. To this
end, we tested SSD512 on our dataset with MobileNetv2 as
the backbone. The resulting AP on the dataset is 68.8%, which
is nearly 10% less than the result of SSD512 with ResNet-50.
However, the inference time of SSD512 with MobileNetv2
(53 ms) is much shorter than SSD512 with ResNet-50 (84 ms).
Therefore, lighter backbones such as MobileNet may be con-
sidered when the onboard computational resource is extremely
limited.

The different performance of FPN and Faster R-CNN
suggests that the network structure FPN can improve UAV
detection capability significantly. Since Grid R-CNN and
Cascade R-CNN have superior and robust performance than
Faster R-CNN, it suggests that the grid guided mechanism and
multi-stage structures could generate better-regressed bound-
ing boxes. While using multi-stage structures will cost more
time, the grid mechanism is highly recommended for future

* F: field, U: urban, M: mountain, S: sky

detector design. Furthermore, the performance of RefineDet is
weaker than SSD512, which may suggest that high-resolution
input also could improve the UAV detection capability. In ad-
dition, RetinaNet shows good and stable performance among
one-stage networks, which suggests that focal loss may be a
recommended method to solve the problem of class imbalance.

C. Image attributes affecting UAV detection

We next evaluate some key aspects of the images such as
environmental background, target scales, viewing angles, and
other challenging conditions on the detection performance.
Since the performance of an algorithm could be affected
by many aspects such as insufficient training and different
parameters, we take the mean Average Precision (mAP) of
these algorithms as the criteria for a fair evaluation.

1) Environmental background: The complexity of the back-
ground scene has a great impact on UAV detection per-
formance. Table III shows the APs of the algorithms for
different types of environmental background. In particular,
the mAP suggests that the sky (88.3%) is the easiest type
of background for UAV detection, while urban (62.0%) is
the hardest. This is consistent with our intuition that the
complex urban background makes visual UAV detection very
challenging.

As for the performance of algorithms, Grid R-CNN shows
consistent and high Precision across different types of back-
ground scenes, whereas the performance of Faster R-CNN
and RefineDet drops rapidly when the background complexity
increases.

2) Target scales: The size of the target UAV in the image
has a great impact on detection performance. Figure 5 shows
the APs of all the algorithms with respect to the target
size/ratio. As shown in the figure, the APs of all algorithms
increase at different rates when the target scale increases. In
particular, Grid R-CNN shows the best performance for differ-
ent target scales, whereas the performance of RefineDet and
Faster R-CNN drops rapidly when the target scale becomes
small.
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Fig. 5. The AP of the algorithms for different target scales. If both the width
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(x € {1/40,1/20,1/10}) of the width and height of the entire image, then
it is classified as < z[W,H]. The AP is calculated by the algorithms with data
in the internals. The mAP represents the mean AP of the eight algorithms in
each scale interval.

3) Viewing angles: It is noticed from our experiment that
the viewing angles of the target UAV also has an impact
on the detection performance. Figure 6 shows the AP for
different viewing angles. It can be seen that the bottom view
leads to the highest Precision, whereas the front view is the
lowest. The reason is that, for the bottom-view cases, the
target shows rich geometric information, and in the meantime,
the background scene is a blue or cloudy sky. However, for
the front-view cases, the target is flat and hence shows less
geometric information, and in the meantime, the background
could be more complex than the bottom view case.

4) Other challenging conditions: The dataset covers some
challenging conditions such as strong/weak lighting, motion
blur, and partial occlusion. The ratios of the images of the
three scenarios in our dataset are 10.8%, 11.2%, and 0.8%,
respectively. Here, partial occlusion refers to the case where
part of the target UAV is out of the field of view. All the
images in these cases can be found online in our dataset.

The testing results of the eight algorithms under the three
challenging conditions are reported in Table IV. It is notable
that partial occlusion causes much lower AP. Part of the
reason is that partially occluded target detection is indeed a
challenging task, and in the meantime, the images of this case
only occupy a small proportion of the dataset. On the other
hand, strong/weak lighting conditions and motion blur do not
compromise the performance significantly, which verifies the
robustness of the deep learning algorithms.

D. Comparison with the state-of-the-art dataset

To the best of our knowledge, MIDGARD is the latest com-
prehensive dataset designed for deep-learning-based micro-
UAV detection [32]. Compared to MIDGARD, the annotation
bounding box of each image in Det-Fly is tighter, because
the images in Det-Fly are annotated one by one manually by
professionals, whereas the images in MIDGARD are automati-
cally annotated based on UVDAR and relative pose estimation.
Moreover, Det-Fly covers a wider range of relative target
distances. In particular, the longest relative target distance in
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Fig. 6. The AP of different viewing angles. This figure is divided into three
parts which are Top (top view), Fro (front view), and Bot (bottom view).
The vertical axis of each part, which is the AP of the algorithms, is from
0.5 to 1.0. The mAP of each part is about 0.78 (Top), 0.72 (Fro), and 0.85
(Bot), respectively. The marker in each part represents the performance of the
algorithm.

Det-Fly reaches more than 100 m, but the longest distance
in MIDGARD is less than 20 m. Due to the wide range of
relative distances, the scale of the target UAV in Det-Fly is
more diverse.

The eight algorithms have been trained and tested on
MIDGARD. The testing results are shown in Table V. As can
be seen, the results of MIDGARD are 10% better than that of
Det-Fly. This might be caused by the complexity and diversity
of the samples in Det-Fly.

VI. CONCLUSION

This paper presented a new dataset, named Det-Fly, for
air-to-air UAV detection and evaluated eight representative
deep-learning algorithms based on this dataset. Not only the
overall performance of the algorithms are carefully evaluated
and compared, the impact of environmental background, target
scales, viewing angles, and other challenging conditions on
the detection performance is also analyzed. According to the
experimental results, suggestions on how to design algorithms
to achieve better detecting performance in the future are given.

In the future, to detect unknown UAVs in various envi-
ronments, the dataset should be further enhanced by adding

TABLE IV
THE AP FOR DIFFERENT CHALLENGING CONDITIONS (%)

algorithms S M P
Cascade R-CNN | 73.3 | 81.5 | 373
FPN 67.9 | 83.1 | 43.0
Faster R-CNN 68.7 | 76.2 | 34.6
Grid R-CNN 83.1 | 84.3 | 40.0
RefineDet 68.4 | 76.0 | 334
RetinaNet 69.1 | 783 | 37.3
SSD512 68.6 | 76.0 | 38.2
YOLOV3 65.3 | 80.9 | 33.3
mean AP 70.6 | 79.5 | 37.1

* S: Strong/weak light, M: Motion blur,
P: Partial occlusion.
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