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Abstract— Introducing vision sensing into swarms presents
three challenges for developing robot platforms. First, the vision
system requires a wide field of view to perceive surrounding
robots. Second, vision algorithms demand high computational
power, which poses a challenge for real-time vision-in-the-loop
simulation. Third, as the swarm scale increases, managing the
system becomes increasingly demanding. The main contribution
of this paper is the development of a novel mobile robot swarm
platform to overcome these challenges. 1) Each robot features
a 360-degree omnidirectional vision system comprising four
cameras, allowing each robot to detect and interact with the
surrounding robots. 2) It has a novel ROS-based distributed
swarm simulation system, which can effectively utilize the
onboard computational resources of multiple robots to achieve
parallel vision-in-the-loop simulation. 3) It features a novel
swarm management system that allows real-time monitoring
and debugging of multiple robots. These innovative designs
provide a novel swarm platform that can facilitate the study of
versatile vision-based swarm tasks.

I. INTRODUCTION

Robotic swarm systems, encompassing rich scientific re-
search problems and extensive potential applications, have
been studied extensively over the past two decades. Existing
studies primarily fall into two categories: theoretical research
and practical platform development. These two categories
complement each other, with practical platforms serving as
crucial tools to validate theoretical algorithms. Current robot
swarm platforms can be classified into aerial [1]-[3], ground
[4], [5], surface [6], [7], and underwater [8], [9] systems.

Considering ground robot swarms exhibit higher advan-
tages in terms of experimental cost and convenience, we
are interested in ground robot swarm platforms. The existing
ground swarm platforms can be classified into two categories
according to whether they emphasize on vision systems. For
example, platforms including Kilobot [4], Droplet [10], Al-
ice [11], Zooids [12], e-puck [13], and HeRo02.0 [14] do not
focus on vision-based swarm tasks, although they may pro-
vide expandable camera boards. By contrast, the platforms
like Turtlebot3 [15], Khepera IV [16], and ROSbot2.0 [17]
integrate vision systems onboard. However, many challenges
such as omnidirectional vision, vision-in-the-loop simulation,
and swarm management are not specifically addressed by
these platforms.

Our research group has long been dedicated to both
theoretical research [18] and platform development [19]-[21]
of multi-robot systems. In particular, we recently developed a

This work is supported by the Dean’s special projects in the School of
Engineering at Westlake University (Grant No. WU2023B013).

All the authors are with the Intelligent Unmanned Systems Laboratory in
the School of Engineering at Westlake University, Hangzhou, China. E-mail:
{mazhao, liangjiachen, wanghongyi, guoshiliang, huopeidong, zhangyin,
zhaoshiyu} @westlake.edu.cn

Fig. 1: Omnibots.

swarm system consisting of 50 ground robots [5]. By the pro-
posed control strategy, this system can efficiently accomplish
various swarm tasks with high adaptability. However, each
robot in this swarm lacks essential onboard modules such as
vision sensing, inter-robot communication, and computing
resources. In this paper, we will extend this system by
proposing a second-generation robot swarm platform.

The swarm platform proposed in this paper is illustrated
in Fig. 1 and Fig. 2. Each robot comprises essential onboard
modules for vision, navigation, computation, and commu-
nication, making it suitable for diverse and complex swarm
tasks. Here, each robot is called Omnibot due to the following
reasons. First, it contains an omnidirectional vision system.
Second, it can execute omnidirectional movement. Third, its
shape is a disc with omnidirectional symmetry.

In comparison to existing robot swarm systems, the inno-
vation of omnibots lies in three aspects.

1) Inter-robot information acquisition is essential for swar-
m systems: each robot needs to acquire the states of its
neighboring robots, such as their positions and velocities.
Currently, wireless communication is the primary means for
inter-robot information acquisition. However, wireless com-
munication lacks scalability to large numbers of robots due
to the need for time or frequency division communication.
By contrast, vision sensing provides a scalable solution since
vision is a passive sensing approach, which avoids mutual
interference among robots. In nature, vision is also the crucial
sensory mechanism in many large-scale animal swarms [22].
Another advantage of vision is that it can provide rich
information about the environment, serving as a crucial
foundation for enhancing the intelligence of the system. In
the past, it was challenging to develop vision algorithms
that can effectively acquire the needed information. However,
recent advancements in deep learning [23]-[25] and visual
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Fig. 2: The hardware architecture of omnibots.

language models [26], [27] present new opportunities for
vision perception in robot swarms.

The first novelty is that each omnibot provides an omnidi-
rectional vision system composed of four low-cost cameras.
An omnidirectional vision system is crucial since every robot
needs to continuously perceive other robots in the swarm for
collaboration or collision avoidance. However, most of the
existing swarm platforms still lack omnidirectional vision
systems, limiting the perception ability of each robot. With
omnibots, researchers can develop various vision algorithms
to achieve scalable and intelligent swarm systems. On top
of omnibots, we have also developed preliminary target
recognition and depth estimation algorithms, enabling mutual
detection and localization among the robots.

2) Before deploying a swarm system, it is essential to vali-
date the system through simulation. Currently, simulation for
swarm systems falls into two categories. The first category
does not consider the vision system, assuming that the vision
system can already provide the required information. This
type of simulation, which focuses primarily on dynamics
and control is usually very efficient, enabling the handling of
large-scale swarm systems [28]. However, the disadvantage
is that it cannot validate vision systems. The second cate-
gory incorporates vision sensors and vision algorithms into
simulation. For instance, in the AirSim/Unreal simulation
environment, each robot can execute vision algorithms to
process captured images of the virtual reality environment
[21]. The advantage is its ability to simulate the vision
system with high fidelity, but the disadvantage is a high
computational load since vision algorithms usually consume
much more time than simulating robot control or dynamics.
More importantly, the overall computational load increases
rapidly as the number of robots increases, usually making
the simulation too slow to be practical.

The second novelty of this work lies in the design of a
hardware-in-the-loop swarm simulation system, which can
efficiently handle large-scale vision-based swarm simulation.
In particular, we establish digital twins of real omnibot-
s in the Gazebo simulation environment. Cameras in the

simulation can capture images of the virtual-reality scene
and these images are then transferred to and processed on
real omnibots. This approach not only allows for parallel
processing, significantly improving the simulation efficiency
to achieve near-real-time simulation but also fully utilizes
the onboard computational resources of omnibots without
the need for additional parallel computers.

3) In practical experiments, the time required for main-
tenance and operation increases rapidly as the swarm scale
increases. This is due to the need for numerous operations
on each robot, including algorithm deployment, program
initialization, startup/shutdown, and battery charging. These
operations significantly elevate the cost of conducting large-
scale swarm experiments. While Kilobot [4] has addressed
some of these issues, such as designing an efficient charging
system, it lacks onboard vision sensing and processing mod-
ules. When robots involve more modules and operations, a
sophisticated swarm management system becomes essential.

The third novelty of this work lies in the development
of a swarm management system facilitating both hardware
and software operations. In particular, the system consists of
online debugging, one-click startup/sleep, one-click program
loading, wireless charging, and wireless centralized control.
These functions greatly contribute to reducing the manage-
ment costs to achieve large-scale swarm experiments.

Finally, we present a demonstration experiment based on
omnibots. In this experiment, three omnibots are used to
achieve a vision-based formation control task. This experi-
ment showcases the capabilities and potential of the platform.

II. SINGLE-ROBOT SYSTEM

This section introduces the system of a single omnibot.

A. Overview

An omnibot, as illustrated in Fig. 2, features several
modules arranged from top to bottom, including an omni-
directional camera module, onboard computer, robot con-
trol board, various types of sensors, power system, motion
system, and a light display module. The overall design
adopts a disc-shaped symmetrical structure to facilitate the
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Fig. 3: The functional architecture of omnibots.

unobstructed installation of the omnidirectional camera on
the top. The light display module consists of a strip of 131
LED lights. The light display module can be programmed to
indicate the different status of the robot.

B. Vision system

To provide comprehensive perception capabilities for each
robot, we designed an omnidirectional vision module.

Regarding the hardware system, we selected four low-cost
cameras, each of which has a horizontal field of view exceed-
ing 90 degrees, to form an omnidirectional vision system
with 360-degree perception capability. To achieve a stable
connection between the four camera modules and the USB
interface of the onboard computer, we designed a connection
board to facilitate compactness and maintainability while
ensuring efficient data transmission (Fig. 2). We employed a
USB port binding mechanism to allocate independent USB
interfaces for each camera, enhancing the system’s flexibility
and configurability. By adopting a generic USB camera
driver framework, the majority of cameras could be used
in the system without additional drivers. To ensure system
stability, we employed ROS time stamps for synchronizing
images with sensor data. This design makes camera selection
more flexible and provides better support for future system
upgrades.

Regarding the algorithms, each omnibot should be able to
perform object detection and depth estimation to accomplish
various swarm tasks. In terms of object detection, a YOLO-
based target detector [23] has been deployed and accelerated
in real-time through TensorRT. Object detection is executed
on the images captured by each of the four cameras. After
that, we use the extrinsic parameters of the cameras to fuse
the detection results. The detector is able to detect omnibots
and other common objects such as pedestrians. Based on the
detection results, the robot can further estimate the distance
and velocity of other robots or objects. Of course, the vision
and control algorithms are fully customizable: developers
should develop their own algorithms according to different
tasks.

C. Other sensors

To meet the requirements of performing versatile swarm
tasks, each omnibot incorporates six types of sensors: a nine-
axis IMU, a wheel odometry, a GPS receiver, and a UWB
module. Developers can customize sensor data acquisition
and data process algorithms based on their specific experi-
mental needs. For instance, the fusion of IMU and odometry
data can be jointly used for robot navigation. GPS and UWB
modules can be utilized for self-positioning and neighbor
communication. The microcontroller board is designed to
reserve multiple interfaces such as UART, CAN, and 12C
for the convenient expansion of additional sensors.

D. Computational resources

To simultaneously address complex vision computations
and motion control, we divided the entire computational
architecture into two main components: a microcontroller
and an onboard computer. These two components comple-
ment each other’s strengths, ensuring the real-time execution
of complex algorithms. The communication between them
utilizes USB-FS, providing a bandwidth of 12 M/s.

Due to the page limitation, the details about the onboard
computer and microcontroller as well as inter-robot commu-
nication, motion system, and power system are omitted in
this version. Details can be found in the arxiv version.

III. SWARM SIMULATION AND MANAGEMENT
A. Swarm management

To facilitate the operation and maintenance of large-
scale swarms, we implement dedicated optimizations on the
management of the entire swarm system.

1) Online debugging: To deploy any control or vision
algorithms, we usually need to debug online to observe
real-time execution results and then make necessary mod-
ifications. Therefore, we developed a system to facilitate
online debugging over multiple robots. The framework of
the system is illustrated in Fig. 4.

This system utilizes ROS as the local message middleware
and abstracts overall robot control and sensor data acquisition
into ROS topics to reduce code coupling. To accommodate
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Fig. 4: The architecture of the swarm management and simulation system of omnibots.

the introduction of a visual system and the requirements
of multi-robot communication and control, the platform
employs MQTT as the wireless message middleware. MQT-
T’s lightweight, reliability, real-time capability, and ease of
integration make it an ideal choice for constructing large-
scale distributed swarm systems.

Built on this framework, we developed a centralized user
interface that allows subscription to camera data from any
robot. As shown in Fig. 4, the interface can simultaneously
view information from up to 8 cameras of any robot. Ad-
ditionally, it can publish control commands to manage the
motion of multiple robots. Within this framework, the val-
idation of visual algorithms that need deployment becomes
straightforward. Developers only need to subscribe to real-
time video streams for validation on the centralized interface.

2) One-click activation/deactivation: To enable one-click
activation or deactivation of all omnibots, we design a low-
power mode for omnibots. In the absence of an activation
command, only the low-power wireless module responsible
for receiving activation signals and the voltage regulator are
operational, resulting in a standby power consumption of
only 105uA. Upon receiving the activation command, the
entire system starts functioning, powering up the control
board first and then initiating the power supply for the
onboard computer and motion system.

Based on this design, we have developed two remote
signal-emitting devices. One device has a broad beam range,
enabling one-click activation or deactivation of all robots.
The other, with a narrower beam range and weaker signal,
allows targeted activation and deactivation of specific robots.

3) Wireless charging: Effective management of robot
charging is an inevitable challenge in large- scale swarm
experiments. To address this, we have devised a specialized
wireless charging solution, incorporating wireless charging
modules and robot charging slots. This system enables
unified charging for the swarm robots, streamlining the
experimental setup and management processes.

B. Swarm simulation

As the number of robots increases, the computational load
of vision-in-the-loop simulation increases rapidly. We ad-
dress this challenge by deploying a Gazebo simulation plat-
form on the onboard computer of every omnibot, leveraging
ROS and MQTT as the underlying message middleware. The
structure of this simulation system is illustrated by Fig. 4.
Although Gazebo does not support distributed simulation, we
have developed a simulation server, depicted in the central
module of Fig. 4, to centrally collect the state from each
robot and send it back to each robot.

In real-time, each robot’s digital twin in the simulation
environment uploads its status information, such as position
and orientation, to the simulation server. Upon receiving this
information, the simulation server organizes and dispatches
it. Omnibots that receive the dispatched messages render
other omnibots in their simulation environment. This ap-
proach ensures scene synchronization for every robot in the
same scenario, achieving distributed simulation. Distributed
simulation, classified as hardware-in-the-loop, not only vali-
dates algorithms but also assesses the feasibility of algorithm
deployment. The simulation code and deployment code are
fully reusable, facilitating the creation of twin simulations
for robotic entities.

IV. EXPERIMENTAL RESULTS

This section shows both simulation and real-world exper-
imental results to validate the proposed system.

Three omnibots are used in the experiments. One omnibot
is designated as the leader, which moves according to the
preset motion trajectory in the shape of “OMNI”. The other
two omnibots act as followers, adjusting their positions based
on their visual perception to maintain desired distances from
both the other follower and the leader. The three omnibots
should maintain an equilateral triangular formation.

Each omnibot uses a Yolov5 network [23] to detect other
omnibots. Once an omnibot has been detected in the image,
its relative distance can be estimated based on the prior
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Fig. 6: Estimation error by vision in the simulation and real-world experiments.

size information of omnibots. In particular, suppose that
the physical height of each omnibot is H. The height of
the bounding box surrounding the detected omnibot in the
image is h. Let f, be the focal length in the camera’s
y-axis direction. Then, the distance can be estimated as
H f, /h. Moreover, the relative bearing can also be calculated
from the detected bounding box based on the camera’s

intrinsic parameters. The details are omitted here since it
is straightforward to do that. We employed a simple PID
controller to control the inter-robot distance and bearing.

A. Simulation experiment results

The simulation results are shown at the top of Fig. 5(a),
which presents the trajectories of the three omnibots during



the experiment and the formation at different moments. the
bottom of Fig. 5(a) shows the images taken by the left
omnibot at ¢ = 170. Figure 6(a) shows the true and estimated
distance between the left omnibot and the leader. As can
be seen, the estimation error is around 0.015 m, which is
satisfactory for this simple task.

B. Real-world experiment results

We deployed this experiment in a real-world setting.
All the algorithms do not need any modifications or re-
deployment, demonstrating seamless sim-to-real deployment.
The results in the real-world environment are shown at the
top of Fig. 5(b). The bottom of Fig. 5(b) shows the images
captured by the four cameras of the left omnibot at time
t =170.

In the real-world experiment, we posted commands
through the swarm management system to set the LED strips
on the robots to various colors as the robots form different
letter shapes. The distance estimation error is shown in
Fig. 6(b), with the ground truth being supplied by the vicon
system.

V. CONCLUSIONS

This paper introduced a novel robot swarm platform. Such
a platform is novel in the following aspects. First, each
omnibot has an omnidirectional vision system to support
various vision-based swarming tasks. Second, the proposed
hardware-in-the-loop swarm simulation system can efficient-
ly handle large-scale vision-in-the-loop swarming simulation.
Third, the proposed swarm management system can facili-
tate both hardware and software operations to reduce the
management costs of large-scale swarm experiments. This
platform provides a comprehensive infrastructure for study
of versatile vision-based swarm tasks.
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