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A Game Theoretic Method for Two-Team
Multi-Player Autonomous Racing

Zhenghao Hu, Xiuxian Li, Senior Member, IEEE,, Min Meng, and Shiyu Zhao

Abstract—This paper explores an autonomous driving compe-
tition between two teams, where the number of members in one
team is greater than or equal to the other team’s, but their
maximum speed is lower. The paper proposes a hierarchical
decision-making approach to address how the slower team can
compete against their opponents through collaboration. Initially,
in the first layer, the teams are paired using weighted bipartite
graph matching, followed by the task reassignment to address
opponents who pose a significant threat. In the second layer,
each player computes its optimal path through the matching-
based iterated best response, taking into account the opponents
determined by the first-layer matching. Through this hierarchical
decision-making module, each player assumes specific roles and
tasks, enabling cooperative blocking, aiding lagging teammates to
catch up or contributing to the team’s leading member to amplify
their advantage. This method aims to increase the team’s chances
of winning competitions at a higher rate.

Index Terms—Autonomous racing, team competition, game
theory, best response, weighted bipartite graph.

I. Introduction

IN recent years, there has been rapid advancement in
autonomous driving. After the DARPA Urban Challenge

[1], research has primarily focused on urban driving [2]. Urban
driving scenarios necessitate vehicles to adhere to traffic rules,
interact with each other, and make real-time decisions based
on surrounding vehicles’ actions [3]. Additionally, autonomous
racing has garnered increased attention, leading to the emer-
gence of official self-driving competitions such as Roborace
[4], Indy Autonomous [5], Formula Student Driverless (The
Formula Student cars are widely employed in research con-
cerning autonomous driving planning and control [6]–[8]), and
the VDI Autonomous Driving Challenge. Compared to urban
driving, the regulations in autonomous racing are less complex,
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devoid of traffic lights or lane-changing requirements. Com-
petitions are generally classified into two categories: 1) Single
player races, where the winner is determined based on the time
taken to complete the track. 2) Head-to-head competitions,
where the player reaching the finishing line first is declared
the winner.

A. Related Work

For the first type, vehicles are expected to fully utilize their
capabilities to complete the racetrack. Many researchers regard
this as an optimal control problem to determine the global
optimal trajectory that meets both dynamic properties and
track boundary constraints. The trajectory can be optimized for
minimum lap time, as demonstrated in [9], which showcases
a non-linear model-predictive framework, crafting an optimal
control problem with time as the principal goal, and [10] by
computing the minimum lap time trajectory with endpoint con-
straints offline and tracking it through NMPC. Alternatively,
Heilmeier et al. [11] solve a quadratic optimization problem
involving constraints on vehicle dynamic limits. This approach
aims to determine a path with minimal curvature around
the racetrack, reducing the lateral acceleration and tire force.
Additionally, energy consumption is considered, particularly in
electric car or drone racing. Hermann et al. [12] take lap time
and energy consumption into consideration to solve an optimal
control problem. Vehicles can plan a local trajectory within a
fixed planning horizon based on the reference line, avoiding
collisions with obstacles or adversaries in the environment.
Liniger et al. [13] develop the MPCC approach, which sim-
plifies the calculation of projection while integrating track
maintenance and collision avoidance constraints via dynamic
programming. Their work demonstrates the viability of these
approaches using a 1:43-scale car. With the development of
deep reinforcement learning, some end-to-end methods such
as DNNs [14], Deep Deterministic Policy Gradient [15], Soft
Actor-Critic [16] and Model-based or Model-free RL [17] are
applied to autonomous driving.

In head-to-head racing, merely driving at maximum speed
might not be optimal due to variations in vehicle performance.
Considering interactions with other agents creates a more
complex scenario where each player needs to respond opti-
mally to the strategies employed by others. Hence, applying
game theory becomes reasonable to deal with the multi-agent
environment. A sensitivity enhanced iterative best response
approach (SE-IBR) designed to approximate the Nash equilib-
rium between the ego player and its opponents is developed
in [18]–[21] both in multi-player drone racing and vehicle
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racing. To address the challenge of poor performance resulting
from inaccuracies in opponent models or states affecting
the SE-IBR algorithm, Notomista et al. [22] combine the
algorithm with a control barrier function to adapt situations
with incomplete information. In [23], Liniger et al. introduce
an alternative method that utilizes the Stackelberg pattern to
show blocking maneuvers in a receding horizon fashion. But
the bi-matrices method applied is unsuitable as the number of
players increases, because the time complexity of searching
for optimal trajectories grows exponentially. Zheng et al. [24]
adopt population-based optimization combined with counter-
factual regret minimization to compute the optimal behaviors
of vehicles across various scenarios. Jung et al. [25] integrate
the Stackelberg game with the MPCC method. This approach
allows the ego car to determine whether to maintain its velocity
or overtake opponents but neglects blocking actions. In [26], a
Gaussian process is applied to understand the leading vehicle’s
behavior. Subsequently, the car behind utilizes a stochastic
MPC to plan optimistic trajectories for potential overtaking
maneuvers, guided by the Gaussian process outputs. He et
al. [27] propose a method that enables the ego car to switch
between time-optimization and overtaking modes under safety
considerations, based on the specific scenario.

In the team-based scenario, [28] reviews methods for team
members to collaborate in completing certain tasks. For rac-
ing scenario, each team member has designated roles and
responsibilities, while simultaneously executing specific tasks
corresponding to opponents. This setting not only involves
competition but also cooperation. Di et al. [29] utilize SE-IBR
algorithm with another wingman preventing the leader from
being overtaken by the opponent. Cui et al. [30] consider a
many-to-one competition with three combination strategies for
the team to collaboratively block the faster opponent. Li et al.
[31] apply the SE-IBR algorithm to a scenario with obstacles,
taking into account both teammates and opponents. Thakkar et
al. [32] study a team competition with limited lane-changing
maneuvers, discretize the racetrack and propose a hierarchical
control approach to obtain the optimal waypoints for players.

This paper investigates a multi-player competition between
two teams, with one team having a lower speed than the other
while having an equal or greater number of members. Each
member considers predetermined opponents and undertakes
specific tasks, aiming to achieve teamwork in the competition.

B. Our Contributions

1) Racing scale: Compared to the many-to-one racing in
[29], [30], the two-team multi-player competition is more com-
plex and lack of literature currently. We design a matching-
based hierarchical framework to obtain the optimal trajectories
for each player, allowing the slower team to achieve a high
winning rate.

2) Task assignment: We design a task assignment algorithm
based on a weight function, especially considering the leading
position, and pay more attention to the opponents with greater
threats. It can alleviate the burden on players before planning
trajectories, as it is challenging for a slower player to compete
with multiple opponents simultaneously shown in [18]–[20].

The matching-based algorithm is a novel introduction in
autonomous racing, as previous research solely incorporates
the influences of teammates into the objective function, as
demonstrated in [31], [32].

3) Role transition and teamwork: Based on the task
assignment algorithm, players can switch roles and perform
different tasks in the dynamic environment. The planning mod-
ule considers the best responses of teammates and opponents,
thus players can engage in actions such as assisting lagging
teammates and cooperating to block opponents.

II. Preliminaries

A. Autonomous Racing Scenario

The research studies two-team multi-vehicle racing, defin-
ing team 1 as T1 = {A1, A2, ..., Am} and team 2 as T2 =

{B1, B2, ..., Bn}, where Ai and B j represent the indices of team
members. In the competition, it is assumed that members in
the same team possess identical maximum speeds. However,
the maximum speed of members in team 1 is lower than that
of team 2. The purpose of the study is to enable team 1 to
increase the probability of any of its members being the first to
cross the finishing line through implementing task allocation,
cooperative blocking and other strategies.

As shown in Fig. 1, player i located at pi = [x, y]T ∈ R2

on the track has a projection point τi on the reference line,
from which the tangent vector ti and normal vector ni of the
reference line at that point can be obtained. The reference line
which is a curve parameterized by the arc-length is known to
the player as

τ : [0, l] 7→ R2,

where l represents the total length of the center line. This
means that the projection point τi on the reference line can be
obtained by the longitudinal position of player i (arc-length
from the origin to the projection point).

To ensure that vehicles remain within the boundaries of
the track, they need to satisfy the track boundary constraints,
which means their lateral distances are less than the half-width
of the track, ∣∣∣n(si)T [

pi − τ(si)
]∣∣∣ ≤ wτ, (1)

where si ∈ [0, l] is the longitudinal position of the player, and
the arc-length of the point on the reference line closest to pi,

si(pi) = arg min
s

1
2

∥∥∥τ(s) − pi

∥∥∥2
, (2)

and si also represents the progress in the competition. It is a
crucial metric for the player to optimize its trajectories along
the race track.

Meanwhile, during the competition, players should pay
attention to the collision avoidance to ensure safety, so all
pairs of players should obey the distance constraint:∥∥∥pi − p j

∥∥∥ ≥ d, ∀i, j ∈ T1 ∪ T2, (3)

where d is the minimum distance between two cars.
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Fig. 1. The track with half-width wτ for the competition. The reference line is
the center line (dashed line). The blue rectangle is player i, and pi represents
the position of the car. ti and ni respectively represent the local tangent and
normal vectors to the track in the projection τi of pi.

B. Polynomial Trajectory Generation

We use the bicycle model and piecewise time polynomial
trajectories applied in [18] to calculate the trajectories of
players in the planning horizon. Let N be the number of
waypoints whose positions should be planned by players,
with a constant time interval of ∆t between any two adjacent
waypoints. The (k + 1)-th polynomial between two waypoints
at time tk = k∆t can be described as[

x(t)
y(t)

]
= pk +

[
αk,0
βk,0

]
t +

[
αk,1
βk,1

]
t2, t ∈ [0,∆t], (4)

where k = 0, 1, ...,N−1. (4) assumes that within ∆t, the vehicle
is uniformly accelerating in both the x and y directions with
respect to time t. The coefficients αk,0 and βk,0 are related to
velocities, while αk,1 and βk,1 are associated with accelerations.
Including the initial states p0 and u0, the trajectory totally has
N + 1 waypoints

pk = pk−1 +

[
αk,0
βk,0

]
∆t +

[
αk,1
βk,1

]
∆t2,

uk = ṗk,
(5)

where k = 1, 2, ...,N. In addition to the continuity constraints
(5) above, these discrete waypoints should also satisfy several
other constraints at each step k (For simplicity, the subscript
k in αk,0/1 and βk,0/1 is omitted below).

1) Maximum speed constraints: The speed of the car is

v2(t) = ∥ṗ∥2 = ẋ2(t) + ẏ2(t). (6)

Since the vehicles accelerate or decelerate on each
trajectory segment, the maximum speed of the vehicle
is obtained at the end points, which means that∥∥∥ṗk

∥∥∥ = ∥∥∥uk
∥∥∥ ≤ v̄, (7)

where v̄ is the maximum speed of the player.
2) Acceleration constraints: From the bicycle model, the

acceleration is
a2(t) = ẍ2(t) + ÿ2(t) − v2(t)θ̇2(t)

≤ ẍ2(t) + ÿ2(t) = 4(α2
1 + β

2
1) ≤ ā2,

(8)

where θ is the heading of the car, α1 and β1 are the
coefficients in (5), ā is the maximum acceleration of the
vehicle, and the constraints are relaxed.

3) Curvature constraints: The curvature of the planned
trajectory should satisfy the vehicle’s steering angle with

κ(t) =
ẋ(t)ÿ(t) − ẏ(t)ẍ(t)
(ẋ2(t) + ẏ2(t))3/2

=
2(α0β1 − α1β0)

[α2
0 + β

2
0 + 4(α0α1 + β0β1)t + 4(α2

1 + β
2
1)t2]3/2

.

(9)
Noting that in (9), the denominator contains a quadratic
polynomial h(t) = α2

0+β
2
0+4(α0α1+β0β1)t+4(α2

1+β
2
1)t2,

this constraint can be simplified to

κmax =
2(α0β1 − α1β0)

mint∈[0,∆t][h(t)]3/2 ≤ κ̄, (10)

where κmax is the maximum curvature of the trajectory,
and κ̄ is the maximum feasible curvature.

C. Multi-Player Autonomous Racing

By discretizing the planning horizon, a sequence ζi =
(p1

i , ..., p
N
i ,u

1
i , ...,u

N
i ) including positions and control inputs

can be defined. In the multi-player game without teammates,
assuming there are M players, each vehicle strives to maximize
its lead over the opponents in the following form:

max
ζi

si(ζi) −
1

M − 1

M∑
j=1, j,i

s j(ζ j) (11)

s.t. f i(ζi) = 0 (11a)
gi(ζi) ≤ 0 (11b)
χi(ζi, ζ j) ≤ 0, (11c)

where
1) f i represents the continuity constraints (5) for player i;
2) gi represents the constraints (1), (7), (8), and (10) for

player i;
3) χi represents the collision avoidance constraints (3).
From the perspective of game theory, considering the col-

lision avoidance constraints between players, the strategies
of both sides affect each other’s actions (such as steering to
avoid collisions). Taking Nash equilibrium into account that
the opponents will respond optimally to the strategy of the
ego player, according to the sensitivity analysis in [19], the
objective function can therefore be replaced by

max
ζi

si(ζi) −
M∑

j=1, j,i

αi js∗j(ζi), (12)

where s∗j(ζi) defines player j’s best response to player i’s
strategy ζi. αi j is a sensitivity parameter designed by player i
with respect to player j. To obtain a closed-form expression for
it, a linear approximation, derived through sensitivity analysis,
is based on the current estimation of the Nash equilibrium
strategy profile. Specifically, assume that in the l-th iteration,
a fixed guess (ζ l−1

1 , . . . , ζ
l−1
M ) for all players has already been

updated. Afterward, each player follows (12) to sequentially
predict the strategies of all players. During the update of
player i’s strategy, the strategies of other players are considered
fixed, taking on values ζ l

j, j < i, as player j has updated its
strategy before player i, or ζ l−1

j , j > i. Each player updates its
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strategy in this manner, predicting the strategies of opponents.
Since ζ l−1

i is available for player j when player i solves an
optimization problem with respect to player j, its optimal
payoff s∗j(ζi) in the vicinity of ζ l−1

i can be obtained using a
first-order Taylor approximation

s∗j(ζi) ≈ s∗j(ζ
l−1
i ) +

ds∗j
dζi

∣∣∣∣∣∣
ζi=ζ l−1

i

(ζi − ζ l−1
i ). (13)

From Lemma 1 in [18], the derivation can be substituted as
ds∗j
dζi

∣∣∣∣∣∣
ζi=ζ l−1

i

= −µl
ji
∂χ j

∂ζi

∣∣∣∣∣∣
(ζ l−1

i ,ζ
l
j)
, (14)

where µl
ji is the row vector of Lagrange multipliers associated

to constraints (11c) at the l-th iteration. By disregarding the
constants unrelated to ζi, (12) leads to

max
ζi

si(ζi) +
M∑

j=1, j,i

N∑
k=1

αi jµ
k,l
ji (σk,l

i j )T pk
i , (15)

where µk,l
ji is the k-th element of µl

ji, and

σk,l
i j =

pk,l
j − pk,l−1

i∥∥∥∥pk,l
j − pk,l−1

i

∥∥∥∥ .
Players can calculate their optimal strategies by (15). Based
on the aforementioned theory, the following sections will give
the details to solve two-team multi-player problems.

III. Design of the planning module
This research focuses on the competition among multiple

players from two teams. Given that team 1 with slower speeds
has a disadvantage, it is assumed that the number of players
satisfy |T1| ≥ |T2|. Each player Ai in team 1 needs to be
assigned a specific role, categorized into two types:

1) Advancers, whose strategy involves advancing as fast as
possible along the track;

2) Defenders, who are allocated their respective opponents
and obstructing the opponents they are assigned to.

By cooperatively blocking opponents, some lagging players
within the team can seize the opportunity to catch up, or
others who are leading can further expand their advantage.
The framework is demonstrated in Fig. 2.

A. Minimum Weight Bipartite Graph Matching
To assign roles and tasks to each player, a matching-

based approach is introduced. Each vehicle is considered as
a node, and its neighbors consist of the opponents (Fig. 3).
The weight of each edge is determined by the lateral and
longitudinal distances between two players. Therefore, the
weighted bipartite graph matching method, also known as
the Kuhn-Munkres (KM) algorithm [33], is applicable in this
scenario.

The weighted bipartite graph is defined as G = (T1
⋃
T2,E),

the weight of the edge eAiB j is defined as

eAiB j =


wd

∣∣∣dAi − dB j

∣∣∣ + ws(sAi − sB j ) if lc
2 ≤ sAi − sB j ≤ l̄

and
∣∣∣dAi − dB j

∣∣∣ ≤ wτ,
ε + wd

∣∣∣dAi − dB j

∣∣∣ − ws(sAi − sB j ) else,
(16)

Fig. 2. The decision-planning framework for the slower team.
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Fig. 3. (a) m = n scenarios. (b) m > n scenarios. Blue and red nodes represent
team 1 and team 2 members, respectively. Solid lines between Ai and B j
denote opponents considered by Ai, while dashed lines signify those beyond
Ai’s range. Red lines display matched pairs from bipartite graph matching,
while green lines show added pairs post-reassignment. Players move from left
to right.

where wd and ws are weights, d· represents the lateral distance,
lc is the length of the car and l̄ = N∆t(v̄Ai+v̄Bi ) is the maximum
allowed longitudinal distance to the opponent. Player Ai con-
siders opponents behind itself in a limited distance and with
a lateral distance not exceeding the track’s radius. Otherwise,
the edge weight will receive ε ≫ 0. Then the task allocation
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objective is

min
m∑

i=1

n∑
j=1

eAiB j · xAiB j

s.t. xAiB j ∈ {0, 1},
n∑

j=1
xAiB j ≤ 1,

m∑
i=1

xAiB j = 1.

(17)

From (17), team 1 will be paired based on the lateral and
longitudinal distances between members and opponents, where
xAiB j = 1 indicates that Ai is matched with B j. All the
opponents will match a distinct member Ai after (17). The
opponent assigned to vehicle Ai is defined as PAi . Situations
similar to the right of Fig. 3a and Fig. 3b might exist, where a
member, due to lagging or being overtaken, poses slight threat
to the faster opponent. In such cases, redistribution of these
opponents is necessary. The opponents in need of reallocation
form the set U,

U =

{
B j|B j ∈ PAi ∩

(
sAi − sB j <

lc
2
∪

∣∣∣dAi − dB j

∣∣∣ > wτ

)}
,

which includes those about to overtake or have already
overtaken, as well as opponents with significant lateral differ-
ences. The task reassignment method is designed for B j ∈ U

who poses a considerable threat. The whole task assignment
algorithm is demonstrated in Algorithm 1. Ai who has no
matched opponent is regarded as an advancer. In theory, due
to the speed disadvantage, it’s more ideal for one or multiple
members to obstruct a single opponent (Fig. 3a), whereas a
single member trying to block multiple opponents often leads
to failure (Fig. 3b).

Algorithm 1: Task Assignment Algorithm

1 Initialization:
2 Obtain initial matching result: PAi = {B j} from (17);
3 Obtain unmatched set U;
4 Sort U and T1 by longitudinal progress

descendingly;
5 for any B j ∈ U do
6 for Ai ∈ T1 do
7 if sAi > sB j and PAi = ∅ then
8 add B j to PAi ;
9 end

10 end
11 if no Ai satisfies Line 7 then
12 add B j to PA∗i where

A∗i = arg min
Ai

1
|PAi |

∑
Bk∈PAi

∣∣∣sB j − sBk

∣∣∣ + ∣∣∣dB j − dBk

∣∣∣
s.t. sAi > sB j

13 end
14 end

In Algorithm 1, Lines 7-9 lead a many-to-one result and
Line 12 resembles a clustering method to identify a member
whose opponents have the closest Manhattan distance to the
opponent being reassigned. This enables the member to have
capability to block multiple opponents simultaneously.

Remark 1: Algorithm 1 determines the roles of the players
before they calculate their trajectories.

1) Algorithm 1 uses the minimum weight matching
(MWM) combined with (16) to minimize the overall
cost of the team when the game is divided into one-to-
one blocking.

2) The algorithm reallocates the members to the opponents
with greater threats, using a greedy matching approach
in Lines 6-10 and a clustering method in Lines 11-13.

Remark 2: In contrast to previous related works, Algorithm
1 exhibits several advantages:

1) In many-to-many scenarios, based on the weight func-
tion, Algorithm 1 demonstrates a more reasonable
matching approach compared to the simple distance-
based allocation method in [30].

2) In the dynamic environment, Algorithm 1 can switch
players’ roles, unlike the method in [34], where oppo-
nents are predetermined at the beginning of the game.

3) Compared to the maximum cardinality matching (MCM)
in [35]–[37] for 3-D reach-avoid games, Algorithm 1
considers the global prevention cost along with the
leading position, a crucial metric in autonomous racing.

The time complexity of MCM based on maximum network
flow [38] and applied in [35] is O(|T1| (|E|+2 |T1|)), where |E|
is the number of edges in G. In contrast, Algorithm 1 here
has the time complexity O(|T1|

3), which is more favorable for
large-scale scenarios, i.e., |E| > |T1|

2 − 2|T1|.

B. Strategies for Two-Team Multi-Player Competition

If a competition is considered between two teams, the
objective of one team can be described as follows:

max
{ζAi }Ai∈T1

1
m

m∑
i=1

sAi (pN
Ai

) −
1
n

n∑
j=1

sB j (pN
B j

), (18)

where m is the number of members in T1, and n is the
number of members in T2. The team aims to maximize the
difference between the average progress of all members and
that of the opponents. After the opponents are matched by
Algorithm 1, the competition will be split into multiple one-
to-one races, with a small number involving one-to-many or
many-to-one scenarios. Based on the multi-player competition
algorithm (Sec. II-C), the objective function of team 1 in the
l-th iteration is modified as follows, considering the opponents
each member matches.

max
{ζAi }Ai

∈T1

m∑
i=1

sAi (pN
Ai

) +
∑

B j∈PAi

N∑
k=1

αAiB jµ
k,l
B jAi

(σk,l
AiB j

)
T

pk
Ai

, (19)

where sAi is given in (2). The objective function means that
the team aims to maximize the progress difference between
each of its members and the opponents they consider. Players
can set µB jAi > 0 to activate collision avoidance constraints,
allowing them to make more aggressive decisions. And if B j

is far away from Ai, then one can set µB jAi = 0 to neglect the
opponent. The selection of µB jAi can be achieved by setting
distance threshold and reselecting adjacent opponents as

NAi =
{
B j ∈ PAi

∣∣∣sAi − sB j ≤ l̄
}
. (20)
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The matching-based iterated best response algorithm is sum-
marized in Algorithm 2. The Line 10 means that the faster
team just considers the progress and drive as fast as possible
along the racetrack to do overtaking actions. Because once
they successfully achieve overtaking, it becomes difficult for
slower vehicles to re-overtake. Therefore, there is no need for
blocking behaviors. The algorithm can be implemented using
parallel programming [20] to speed up. In this manner, team
1 and team 2 update their (l + 1)-th strategies simultaneously
with only l-th strategies.

Algorithm 2: Matching-Based Iterated Best Response

1 Set the maximum number of iterations L;
2 Initialize all vehicles’ strategies ζ0;
3 Use Algorithm 1 to perform matching;
4 Use (20) to reselect opponents;
5 for l = 0, 1, ..., L − 1 do
6 for Ai in T1 do
7 Solve the objective (19) for Ai with

{ζ l+1
A1
, ..., ζ l

Ai
, ..., ζ l

Am
, ζ l

B1
, ..., ζ l

Bn
}, obtain the

optimal strategy ζ l+1
Ai

;
8 end
9 for B j in T2 do

10 Solve the objective (19) with µAiB j = 0 for B j

with {ζ l+1
A1
, ..., ζ l+1

Am
, ζ l+1

B1
, ..., ζ l

B j
, ..., ζ l

Bn
}, obtain

the optimal strategy ζ l+1
B j

;
11 end
12 end
13 T1 updates strategies once again;
14 Obtain the optimal strategies ζAi and ζB j .

Remark 3: Compared to previous autonomous racing re-
search, Algorithm 2 has the following advantages:

1) Compared to [18]–[20], [31], [32], due to Lines 3 and
4, players only focus on their matched opponents within
a certain range, reducing ineffective blocking actions.

2) In [30], a GNG framework is designed with an inter-
nal game among team members, doubling the iteration
time compared to Algorithm 2. And Algorithm 2, in
contrast, directly incorporates teammates’ strategies in
(19), avoiding suppression among teammates.

3) Algorithm 2, in contrast to [13] and [39] which obtain
Stackelberg equilibria from payoff matrices, addresses
more fair scenarios in multi-player racing, because, from
a game perspective, all players are considered identical
in this paper.

4) Compared to the approach in [25], where blocking ac-
tions are not considered, Algorithm 2 enables overtaking
and blocking, with the team considering all opponents.

IV. Simulation Results

A. Simulation Setup

Consider a two-team multi-vehicle racing, where the maxi-
mum speed of one teams is set to be less than the other, and
the team with the slower speed gains an initial longitudinal
distance lead at the beginning. The time step is chosen

∆t = 0.5s and the total planning horizon is 4s. Rather than
employing vision-based tracking and estimation methods in
the simulation, the interaction behaviors between the agents
are tested only under the assumption that the agents can
acquire the positions of their opponents and teammates. After
obtaining the optimal trajectory of the vehicle from (19), the
vehicle proceeds to track the first path point.

To ensure initial interaction between the vehicles of both
teams, the simulation guarantees that the starting position of
the faster vehicle is positioned behind the slower vehicle.
The initial position of the faster vehicles are sampled from
a uniform distribution within the rectangle [−1, 1] × [−8, 8]m.
Similarly, the starting positions of the slower vehicles are uni-
formly sampled from a rectangle bounded by [4, 6]×[−8, 8]m.
The vehicles are modeled as rectangles with a length of 4m
and a width of 2m. Collision detection is implemented during
the initial position setting, and any positions violating collision
avoidance constraints are resampled. The winning criterion is
that any member of any team reaching the finish line first. It
is considered a success if a member Ai is the first to reach
the finish line. Due to the existence of collision avoidance
constraints, the results show that the probability of collision
during the race is relatively low in the simulation. However,
the optimization problem may encounter the situation where
no solution can be found, according to the basic work [21],
the hard constraints are converted into soft constraints and
the problem is re-solved. If the objective function still has
no solution, vehicles will continue to follow the last planned
trajectories.

B. Simulation Results

Algorithm 2 is evaluated on the circular track with a total
length of approximately 388m. The race scenarios considered
involve two-versus-two, three-versus-two, and three-versus-
three competitions. First of all, the algorithm is tested without
the matching Algorithm 1, and the results show that the slower
team loses all the competitions because they lacked a proper
strategy for collaboration. The members continue to compete
individually rather than adopting a cooperative approach,
rendering their blocking efforts futile when considering the
situations involving all opponents. Fig. 4 depicts the positions
of vehicles at different moments during a competition without
using the task assignment algorithm. It can be observed that,
in this scenario, the strategy choices of slower vehicles appear
chaotic. The slower vehicles may tend to block farther oppo-
nents, leading to blocking failures and loss of their original
leading position. The results indicate that blocking multiple
opponents simultaneously is not a viable strategy for a slower
vehicle.

The results successfully employing Algorithm 2 based on
Algorithm 1 are shown in Table I. As the speed difference
narrows, the winning rate of the slower team increases, es-
pecially when the teams have an equal number of members.
Additionally, the slower team can enhance its winning rate by
leveraging the advantage of member quantity and employing
various cooperative strategies. The velocity curves of players
in both x and y directions (vx and vy) are shown in Fig. 5. It
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Fig. 4. Snapshots in the 8m/s vs. 10m/s scenario without Algorithm 1.

can be observed that faster vehicles attempt to overtake with
higher |vy| on the straight, which means the defenders can
force the opponents to change direction to overtake, thereby
preventing them from reaching their maximum speed.

TABLE I
Winning rate in different competitions

Racing scenarios 7m/s vs. 10m/s
winning times

8m/s vs. 10m/s
winning times

9m/s vs. 10m/s
winning times

2 vs. 2 21/129 113/37 147/3
3 vs. 2 65/85 126/24 150/0
3 vs. 3 2/148 97/53 110/40
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Fig. 5. Plots of velocity in x-axis and y-axis versus time for each vehicle in
three-versus-two scenario (8m/s vs. 10m/s). The legends are same with Fig. 4.

In situations where the disadvantaged team has a greater
number of members, the slower players in team 1 exhibit
diverse driving behaviors. As shown in Fig. 6a, it depicts
the scenario where team members obstruct opponents to assist
another teammate behind. The teammate seizes the opportunity
to catch up successfully, and its role transitions from an
advancer to a defender. And Fig. 6b shows the situation where
an opponent is overtaking. Two blue cars pay more attention
to the opponent with a significant threat and collectively block
it. Members switch back to one-to-one blocking strategies

when the threat from opponents diminishes. Fig. 6c show-
cases the outcomes of one-to-one blocking achieved through
task allocation in an equal-number scenario. Representative
simulation examples are shown in the video (available online
at https://youtu.be/OdTuzl Ocag).

From the simulations, it is verified that the proposed
method outperforms the GTP method [18] (Fig. 4), which
considers more opponents in the competition, and does not
act effectively on blocking opponents in two-team scenarios.
With Algorithm 1, the slower team operates more cohesively,
effectively assigning tasks among its members and focusing
on the opponents around them.

(a)

(b)

(c)

Fig. 6. Snapshots in different 8m/s vs. 10m/s scenarios. (a) shows the scenario
where the teammates block the opponents to help a teammate. (b) shows the
scenario where players cooperatively block an opponent. (c) shows one-to-one
blocking scenarios.

V. Conclusion
This paper explores the autonomous racing involving two

teams of multi vehicles. The objective is to find an approach
for the slower team to win the game. This is achieved through
an iterated best response approach combined with a designed
task assignment algorithm.

We design a weight function to employ minimum weight
bipartite graph matching method, and based on this, a task
assignment algorithm is proposed. Furthermore, approaches
for redistribution to address edge cases are also considered
in Algorithm 1. The vehicles dynamically determine their
roles in real-time based on the task assignment algorithm,
enabling them to fulfill tasks such as advancing or blocking
in dynamic scenarios. We demonstrate the effectiveness of the
task assignment algorithm through simulations, comparing the
results with and without Algorithm 1.

Then, a matching-based algorithm is designed for vehicles
to iteratively update their strategies based on the task as-
signment algorithm, and the algorithm converges. We exhibit
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the results in different scenarios and showcase the varying
driving behaviors among team members, thereby confirming
the effectiveness of Algorithm 2.
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