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Domain Adaptive Detection of MAVs:
A Benchmark and Noise Suppression Network
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Abstract— Visual detection of Micro Air Vehicles (MAVs)
has attracted increasing attention in recent years due to its
important application in various tasks. The existing methods
for MAV detection assume that the training set and testing set
have the same distribution. As a result, when deployed in new
domains, the detectors would have a significant performance
degradation due to domain discrepancy. In this paper, we study
the problem of cross-domain MAV detection. The contributions
of this paper are threefold. 1) We propose a Multi-MAV-Multi-
Domain (M3D) dataset consisting of both simulation and realistic
images. Compared to other existing datasets, the proposed one is
more comprehensive in the sense that it covers rich scenes, diverse
MAV types, and various viewing angles. A new benchmark for
cross-domain MAV detection is proposed based on the proposed
dataset. 2) We propose a Noise Suppression Network (NSN)
based on the framework of pseudo-labeling and a large-to-
small training procedure. To reduce the challenging pseudo-label
noises, two novel modules are designed in this network. The
first is a prior-based curriculum learning module for allocating
adaptive thresholds for pseudo labels with different difficulties.
The second is a masked copy-paste augmentation module for
pasting truly-labeled MAVs on unlabeled target images and
thus decreasing pseudo-label noises. 3) Extensive experimental
results verify the superior performance of the proposed method
compared to the state-of-the-art ones. In particular, it achieves
mAP of 46.9%(+5.8%), 50.5%(+3.7%), and 61.5%(+11.3%) on
the tasks of simulation-to-real adaptation, cross-scene adaptation,
and cross-camera adaptation, respectively.

Note to Practitioners— To study the cross-domain MAV detec-
tion problem, this paper establishes a novel benchmark that
consists of three domain adaptation tasks: simulation-to-real
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adaptation, cross-scene adaptation, and cross-camera adaptation,
respectively. The benchmark is based on a novel MAV dataset
called Multi-MAV-Multi-Domain (M3D), which is available at:
https://github.com/WestlakeAerialRobotics/M3D. To reduce the
noises caused by pseudo labels, a noise suppression network
is proposed to overcome the error accumulation. Extensive
experiments are conducted to prove the effectiveness of the
proposed approach.

Index Terms— MAV detection, domain adaptation, MAV
dataset, noise suppression.

I. INTRODUCTION

MAV detection [1], [2], [3] has attracted increasing
attention due to its important applications in various

tasks such as multi-MAV swarming [4] and detection of
malicious MAVs [5]. Although in recent years vision-based
MAV detection has been studied under different setups [6],
[7], [8], [9], MAV detection still faces critical challenges
to be applied in practice [10]. The existing MAV detection
methods aim to improve the performance of MAV detection
under the assumption that the training set and testing set have
the same distribution. As a result, deploying these detectors
in new domains (e.g., different environments) would result
in significant performance degradation due to the domain
discrepancy. To this end, it is necessary to develop novel
cross-domain MAV detection approaches.

Cross-domain object detection has been studied in recent
years. The benchmarks in this area contain inverse weather
adaptation, simulation-to-realistic adaptation, real-to-artistic
adaptation, and day-to-night adaptation [11], [12], [13]. Due
to the small amount of data in some target domains, a few
works even exceed the supervised learning approaches [14].
Existing methods for cross-domain object detection can be
classified into domain mapping, adversarial learning, consis-
tency learning, and pseudo-labeling. For the works focusing on
the style differences, domain-mapping methods (e.g., image-
to-image translation) are adopted in the adaptation algorithms
to reduce the appearance gap between the source domain and
target domain [15], [16]. Adversarial learning has been widely
explored to minimize domain discrepancy [14], [17]. Some
works propose consistency-based methods to further improve
the adaptation performance [18]. Pseudo-labeling has become
popular due to its simplicity and effectiveness despite the
performance being restricted by the pseudo-label noises [19].

While advancements have been made in cross-domain
object detection, it is crucial to notice that the challenges
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Fig. 1. Samples from the proposed Multi-MAV-Multi-Domain (M3D) dataset. The top to bottom shows examples from the M3D-Sim subset and M3D-Real
subset, respectively. The backgrounds of MAVs contain many types: mountains, buildings, villages, rivers, deserts, farmlands, parks, and roads. MAVs are
usually small objects in captured images. The enlarged MAVs containing diverse types are presented at the lower right of each picture.

specific to MAV detection require tailored solutions. First, the
backgrounds of MAVs are more diverse than common objects
like cars or pedestrians. As shown in Fig. 1, MAVs captured
by cameras with multi-viewing angles (i.e., ground-to-air
and air-to-air) may appear in diverse scenes. The diversity
and complexity of the backgrounds cause severe challenges
for MAV detection. Second, due to the requirement for
long-range detection, the imaging sizes of MAVs are usually
much smaller than that of the objects in natural images. For
example, the average area of the objects in the real-to-artistic
adaptation task occupies 12.7% of the entire image [20],
while the MAVs in Drone-vs-Bird dataset only take 0.10%
[21]. Small objects further increase the difficulty of detection.
Finally, MAV detection requires real-time detection, which
is an issue that is usually ignored by cross-domain object
detection researchers cause most methods are based on
two-stage detection networks with high accuracy but low
efficiency. Therefore, it is necessary to develop novel
cross-domain MAV detection approaches tailored to the
unique characteristics and challenges of MAV detection.

In light of these challenges, this paper focuses on the cross-
domain MAV detection problem. We aim to use the unlabeled
target data to help the MAV detectors adapt to the target
domain. The contributions of this paper are threefold.

1) We propose a Multi-MAV-Multi-Domain (M3D) dataset
to study the cross-domain MAV detection problem. Com-
pared to the state-of-the-art MAV datasets [10], [21], [22],
our dataset contains different styles of images, more diverse
environments, and more types of MAVs. Our dataset consists
of two subsets: M3D-Sim and M3D-Real with 28,740 and
55,259 images, respectively. Some image examples are shown
in Fig. 1. M3D-Sim is collected from a simulation platform
called Unreal Engine [23] and includes 22 MAVs and 16 envi-
ronments. M3D-Real is a realistic dataset that contains diverse
scenes and 10 types of MAVs.

Based on the proposed M3D and other existing MAV
datasets, we construct a novel benchmark that contains
several representative tasks: simulation-to-real adaptation,
cross-scene adaptation, and cross-camera adaptation, respec-
tively. A comprehensive experiment is also conducted on the
M3D dataset for universal MAV detection. To our best knowl-
edge, we are among the first to benchmark the problem of
cross-domain MAV detection and study this issue in this area.

2) We propose a novel Noise Suppression Network (NSN)
to address the domain discrepancy through pseudo-labeling.

The inaccuracy of the pseudo labels will increase when
meeting smaller MAVs under more diverse backgrounds. NSN
can effectively overcome the limitations of existing unsu-
pervised domain adaptation methods. NSN consists of two
modules, a prior-guided curriculum learning module, and a
masked copy-paste augmentation module, to fully utilize the
domain-specific information of target data and reduce the
pseudo-label noises. First, the prior-guided curriculum learning
module is for generating more accurate pseudo labels. A novel
difficulty matrix is adopted to evaluate the complexity degree
of MAV samples. Then, curriculum learning is used to help
the model adapt to target samples with different detection dif-
ficulties. Second, the masked copy-paste augmentation module
is for decreasing the pseudo-label noises by adding more true
labels. Cropped MAV images with true labels are segmented
automatically first and then pasted on the unlabeled target
images. The participation of true labels can help the detection
model adapt to new backgrounds and reduce the influence of
noises.

These two simple yet effective modules eliminate the error
accumulation from self-training caused by pseudo-label noise,
which impedes the performance improvements of MAV detec-
tors on the target domain. Besides, to meet the requirement
of real-time MAV detection, we also employ a large-to-small
model training procedure to help the large model gradually
transfer knowledge to the small model. Our NSN method
is model-agnostic and can be combined with other detection
networks.

3) We conduct extensive experiments on the proposed
domain adaptive MAV detection benchmark. Before adap-
tation, the detection models face significant performance
degradation and only achieve mAPs of 39.9%, 28.7%, and
31.9% on the target datasets. The experimental results show
the effectiveness of our proposed method. In particular, our
method achieves mAPs of 46.9%(+5.8%), 50.5%(+3.7%),
and 61.5%(+11.3%) on the tasks of simulation-to-real adap-
tation, cross-scene adaptation, and cross-camera adaptation,
respectively, which significantly outperforms the baseline
algorithm [19]. Our method also achieves state-of-the-art
results on the proposed adaptation tasks.

We also conduct ablation studies to show the functionalities
of different modules in NSN. The ablation study contains
three parts, the participation of different modules, the choice
of cropped images for data augmentation, and the varying of
different hyper-parameters. We also compare our augmentation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Westlake University. Downloaded on May 01,2024 at 06:54:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DOMAIN ADAPTIVE DETECTION OF MAVs: A BENCHMARK AND NOISE SUPPRESSION NETWORK 3

module with other methods to show the improvement ability
on the domain adaptation tasks. The qualitative and exper-
imental analysis provides ample evidence for the feasibility
and effectiveness of the proposed method.

II. RELATED WORK

A. Object Detection and MAV Detection

Object detection is a well-studied area and can be sepa-
rated into one-stage-based and two-stage-based methods [24].
The main difference between these two types of methods
is whether the network contains a region proposal net-
work (RPN) module [25]. Generally, one-stage-based methods
cost less time but have lower accuracy. YOLO [26], [27],
RetinaNet [28], FCOS [29] and Centernet [30] are some
representative detection models. Two-stage methods like R-
FCN [31], Cascade-RCNN [32], and DETR [33] can produce
results with higher accuracy but cost more time. Thus, some
researchers aim to make the one-stage-based detection models
inference fast with higher precision. One-stage-based methods
are suitable for MAV detection because the detection models
require to be deployed to embedded devices with limited
computation ability.

MAV detection methods can be classified into two types:
appearance-based methods [4], [34] and motion-based meth-
ods [22], [35]. In this paper, we mainly focus on improving the
adaptation performance of appearance-based methods. Many
MAV detectors draw lessons from the object detection area
and are built on detection models like Faster-RCNN [25] and
YOLO [27]. Due to the importance of MAV detection, there
have been some works that designed deep-learning networks
that specialized in detecting MAVs to solve this issue [36],
[37]. [38] proposes MAVNet to achieve real-time detection
of MAVs from a semantic segmentation network with fewer
parameters. TIB-Net [9] utilizes a tiny iterative backbone to
enhance the performance of small objects. FastUAVNet [39]
is modified on YOLOv3 [26] by using the inception blocks to
extract local and glocal features. However, the performance
of those MAV detectors degrades sharply when the train-
ing and testing domains are not in the same distribution.
To improve the detection performance of MAV detectors
in testing environments, we propose the cross-domain MAV
detection benchmark for further research.

B. Cross-Domain Object Detection

Cross-domain object detection methods aim to adapt to the
unlabelled target domain from the labeled source domain. The
benchmarks for cross-domain detection have several types,
which are concluded in Table I. Some target datasets in these
benchmarks have a small amount of data, making the domain
adaptation methods exceed the supervised learning with the
help of a large amount of labeled source data [14], [15]. There
are also domain adaptation works that specialize in computer
vision applications like pedestrian detection [40], face recogni-
tion [41], and X-ray object detection [42]. Many methods have
been proposed to address the domain discrepancy in object
detection. Most cross-domain object detection methods adopt
Faster-RCNN as their detection model. There are a few works

TABLE I
THE COMPARISON OF DIFFERENT TASKS IN TRADITIONAL DOMAIN

ADAPTATION BENCHMARK. NS AND NT REPRESENT THE IMAGE NUM-
BERS IN THE SOURCE DATASET AND TARGET DATASET

that pay attention to one-stage models to study the domain
adaptation issue [18], [19], [43], [44], [45].

The cross-domain object detection methods [46] could
be mainly divided into adversarial training [14], [17], [47],
domain alignment [12], [47], [48], [49], and self-training [50],
[51]. Adversarial learning-based methods are suitable to deal
with domain adaptation tasks with huge differences. The
NLTE method [52] proposes a data mining module and
a graph relation module for learning the domain-invariant
representations. When the target data doesn’t have signif-
icant differences from the source data, adversarial training
may be ineffective in learning domain-invariant representa-
tions. Domain alignment-based methods aim to reduce the
distribution discrepancy by aligning features at the region
level or instance level. The AsyFOD method [53] aims to
reduce the domain gap by conducting the feature alignment
between target-dissimilar source instances and augmented
target instances to avoid over-adaptation. The MGADA
method [54] tries to align the source and target domains
from the pixel level, instance level, and category level. How-
ever, these two types of methods do not fully exploit the
domain-specific information of the target data.

Data augmentation algorithms are widely utilized in
cross-domain detection and have many types: GAN-based
methods, strong-weak augmentation and mixup augmentation.
Many works [55], [56], [57] use GAN-based methods (e.g.,
CycleGAN [16]) to reduce the gap between different domains.
However, this type of method can have satisfactory results in
tackling style-difference domains but has poor performance
in solving real-to-real or scene-to-scene issues. Strong-weak
augmentation methods usually appear with the teacher-student
models to learn the appearance-invariant features [58]. Some
works [49] use mixup augmentation [59] to generate domain
intermediate images. The AcroFOD method [60] proposes a
multi-level data augmentation algorithm and a new training
strategy to reduce the domain shift. The above methods all
attempt to reduce the shifts between source and target domains
by making their appearances look more similar. However,
the unlabeled target data is still not fully utilized in an
unsupervised learning way.

C. Pseudo-Labeling in Domain Adaptation

Pseudo-labeling is a popular way to deal with
semi-supervised learning and unsupervised learning tasks due
to its simplicity and effectiveness. For domain adaptation
tasks, the pseudo-labeling technique has been widely
combined with several types of methods to reduce the noises
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TABLE II
THE IMAGE NUMBERS OF DIFFERENT SUBSETS IN OUR M3D DATASET

and obtain pseudo-labels with higher accuracy. The TDD
method [61] is based on a unified teacher-student learning
framework and a target proposal perceiver module to reduce
the domain shift. The SimROD method [19] proposes to use
the heavy-weight teacher model to generate more precise
pseudo labels. However, when there exists a large domain
shift, the teacher model still cannot generate reliable pseudo
labels for training. Some works utilize curriculum learning
to improve the accuracy of pseudo labels and obtain better
performances [62], [63]. Compared to traditional deep
learning, curriculum learning is a novel training paradigm
by learning from easy to hard examples [64]. However, due
to the particularity of the MAV detection problem, existing
curriculum domain adaptation methods are less effective in
reducing the domain gap. Some works refine pseudo labels
by exploiting the intra-class similarity and aligning the source
and target domains [65]. Due to the diversity of MAVs,
backgrounds, and perspectives, the similarity of the MAV
category is non-centralized and hard to utilize.

To avoid recurrent problems, we propose an MAV dataset
containing a large amount of data and build a cross-domain
MAV detection benchmark based on the dataset. We pay atten-
tion to the pseudo-labeling noise generated by self-training
methods. The noise of pseudo labels increases when meeting
small MAV targets and diverse backgrounds. Two modules
are proposed to reduce the noise and help the detection model
adapt to target domains better.

III. MULTI-MAV-MULTI-DOMAIN DATASET

We propose an MAV dataset called Multi-MAV-Multi-
Domain (M3D) to study the domain adaptation problem. The
M3D dataset contains two types of images: simulation images
(M3D-Sim) and realistic images (M3D-Real). This dataset
contains diverse MAVs, scenes, and viewing angles in both
the simulation set and the real-world set. Some examples of
these two sets are shown in Fig. 1. Our dataset only contains
the MAV class. We do not label other objects so there is only
the MAV class in the images. There are a total of 83,999
images with 86,415 boxes in the M3D dataset. Thus there is
one MAV average per image. The data is collected under the
condition that one MAV pursues another MAV in the air. The
image numbers of these subsets are shown in Table II. Details
of the subsets are introduced as follows.

A. Simulation Subset: M3D-Sim

M3D-Sim subset contains 28,740 simulation images. There
are 22,992 images in the training set and 5,748 images in

the validation set, respectively. To reduce the time and cost
caused by human labeling, we use the simulation platform to
automatically collect data. Multiple MAVs and environments
are included in M3D-Sim to improve the generalization ability
of the simulation set. With the help of Unreal Engine and
Airsim [68], we collect data on 22 types of MAVs and 16 dif-
ferent environments, whose examples are shown in Fig. 2. The
images are captured from multiple perspectives (i.e., ground-
to-air, air-to-air, and air-to-ground) by the same camera fixed
on another MAV. The images collected in the 16 environ-
ments establish a subset called M3D-Sim-Normal. Besides, the
partial dataset is generated by texture randomization [69] to
reduce the gap between simulation and reality. Therefore, the
M3D-Sim dataset consists of two subsets: M3D-Sim-Normal
and M3D-Sim-Texture, containing 18,476 and 10,264 images,
respectively. The purpose of the M3D-Sim-Texture subset is
to validate the feasibility of texture randomization methods.
Details are shown in Section V-F3. Compared to the state-
of-the-art dataset in [70], our dataset contains more types of
MAVs and more diverse environments with a moving camera
and multi-viewing angles.

B. Realistic Subset: M3D-Real

The M3D-Real subset contains 55,259 realistic images.
Unlike common objects like cars or pedestrians, the collection
of MAV images requires the preparation of multiple types
of MAVs and a moving camera (e.g., another MAV with a
camera). The motion of the camera can guarantee the diversity
of shooting perspectives and changes in backgrounds. Thus
the data collection of MAVs is more arduous and time-
consuming. In the M3D-Real subset, we purchased 10 types
of MAVs, which are shown in Fig. 3(a). These MAVs have
different sizes, shapes, and poses in the images. The images are
collected in two cities with different natural styles. We collect
data at multiple locations whose categories contain mountains,
buildings, villages, rivers, deserts, farmlands, parks, and roads.
Each category also has several different locations for diversity.
Some examples are shown in Fig. 3(b). The trajectory of
the MAVs at each location covers an area whose maximum
value achieves one square kilometer. Thus the backgrounds of
this real subset are much more diverse compared to existing
MAV datasets collected by institutes. These characteristics can
increase the generalization of the MAV detection network.

To study the impact of background changes on detection,
all images are captured by the same camera (DJI H20T).
Benefiting from the wide variety of environments, we separate
the dataset into a source domain (M3D-Real-Source) and a tar-
get domain (M3D-Real-Target) to study the scene-adaptation
problem. Fig. 3(b) shows some examples from the two sets
for comparison. The M3D-Real-Source subset and the M3D-
Real-Target subset contain 39,933 images and 15,326 images,
respectively.

C. Comparison With Other MAV Datasets

The comparison of different MAV datasets is shown
in Table III. The table contains six representing datasets.
We compared various attributes of these datasets, such as the
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Fig. 2. The MAVs and environments in M3D-Sim subset.

TABLE III
THE COMPARISON OF DIFFERENT MAV DATASETS. “AIR-TO-AIR” AND “AIR-TO-GROUND” REPRESENT THAT THE IMAGES ARE CAPTURED BY A

CAMERA FIXED ON AN MAV IN THE AIR

number of images, data sources, and shooting perspectives.
Det-Fly dataset [10] involves multiple shooting angles but
only one type of MAV. Real-World dataset [66] has multiple
MAVs, but all the images are collected from the Internet.
Besides, the images are mainly shot from the ground-to-
air perspective. Most of the images in the Drone-vs-Bird
dataset [21] have small MAVs, but the camera is fixed on the
ground. MIDGARD dataset [67] contains indoor and outdoor
environments with a single MAV and low-resolution images.

There is only one MAV (DJI Phantom) in the USC-Drone
dataset [7] with a ground-to-air viewing angle. Besides, only
one-fifteenth of the data in this dataset is labeled. YouTube
dataset [7] only contains a small number of images collected
from YouTube.

Our M3D dataset has several advantages. First, our dataset
contains images from multi-domains. Both the simulation set
and realistic set contain large amounts of images. Thus it is
suitable for studying cross-domain MAV detection. Second,
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Fig. 3. The MAVs and environments in M3D-Real subset.

compared to other datasets, our dataset contains more types
of MAVs and more diverse environments. Third, all the images
are captured by a moving camera with multiple viewing
angles. The diversity of viewing angles guarantees the general-
ity of the data. Due to the diversity of our dataset, we conduct
several types of domain adaptation tasks, which are introduced
in Section V-A.

IV. PROPOSED METHOD

The motivation of this work is to design a cross-domain
MAV detection approach that can reduce domain discrepancy
so that the model can perform well in the target domain.
Suppose that the source domain {S,Ys} = {(I s

i , yi )|
Ns
i=1} has

Ns labeled samples and the target domain T = {I t
i |

Nt
i=1}

has Nt unlabeled samples, where Ii is the i-th image and
yi is the corresponding labels consisting of bounding boxes
and category information. The source and the target domains
have different but related distributions. For the cross-domain
MAV detection task, we aim to obtain an adaptive detection
model M(S, T ) by using both the labeled source domain and
unlabeled target domain samples.

We use self-training strategies to address the domain dis-
crepancy of cross-domain MAV detection. Here, pseudo-label

noises are restrictions to improve the model performance.
Thus, we propose a novel Noise Suppression Network (NSN)
to suppress the noises from both internal and external ways.
NSN is based on the framework of pseudo-labeling and a
large-to-small training procedure. This network consists of
two novel modules. Section IV-A presents the overall training
procedure of our model. Then, we elaborate on two criti-
cal modules of our model, i.e., the Prior-guided Curriculum
Leaning (PCL) in Section IV-B and Masked Copy-paste Aug-
mentation (MCA) in Section IV-C.

A. Overall Approach

NSN contains a large-to-small model training procedure
to transfer the knowledge of a heavyweight model to a
lightweight model. Thus, we can obtain a small but accurate
adaptive model capable of real-time detection. The train-
ing procedure contains three stages and is explained in
Algorithm 1.

Stage 1: Denote the large model and the small model as
Ml and Ms , respectively. We first train these two models on
the source domain and obtain a source large model Ml(S)

and a source small model Ms(S).
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Fig. 4. The framework of each training stage in the noise suppression network. 1) The prediction of unlabeled target data is employed as pseudo labels
and corrected by the prior-guided curriculum learning module; (see Section IV-B) 2) The unlabeled target data is augmented by the masked copy-paste
augmentation module that can generate true labels; (see Section IV-C) 3) The detection model is trained by labeled source data and augmented target data
for E epochs.

Algorithm 1 Noise Suppression Network (NSN)
Input: Labeled source dataset {S,YS}, Unlabeled target
images T
Parameter: Training epochs E
Output: Adaptive model Ms(S, T )

1: Stage 1: Train source model Ml(S) and Ms(S).
2: Stage 2.1: Generate pseudo labels Y p

T =FMl (T );
3: Use the PCL module to correct pseudo labels Y p

T ;
4: Use MCA to augment TA and add true labels Y t

T ;
5: Freeze wMl except for BatchNorm Layers;
6: Use {YS |S, (Y t

T , Y p
T )|TA} to train Ml(S, TA) for E .

7: Stage 2.2: Repeat lines 2-4 based on the last model and
update Y t

T , Y p
T , TA;

8: Unfreeze the wMl of Ml(S, TA);
9: Use {YS |S, (Y t

T , Y p
T )|TA} to train Ml(S, TA) for E .

10: Stage 3: Repeat lines 2-4 based on the last model and
update Y t

T , Y p
T , TA;

11: Freeze wMs except for BatchNorm Layers;
12: Use {YS |S, (Y t

T , Y p
T )|TA} to train Ms(S, TA) for E .

13: return Ms(S, TA)

Stage 2: The source large model Ml(S) generates initial
pseudo labels Y p

T of the unlabeled target data. To improve the
accuracy of pseudo labels, we use the prior-based curriculum
learning module (Section IV-B) to correct them. Moreover,
the masked copy-paste module (Section IV-C) is adopted to
reduce the pseudo-label noises by generating augmented target
images TA. The adaptive model Ml(S, TA) is obtained by
training the source data and target data. To make the best of
the large model, we retrain the model Ml(S, TA) using a new
set of data with updated pseudo-labels which are more precise
than the last period. Stage 2 contains two periods. The weight
wMl of the model is frozen except for BatchNorm Layers at
the first training period. The weight is unfrozen during the
second training period. In this way, the adaptive large model
can perform well on the target domain.

Stage 3: The adaptive large model generates more precise
pseudo labels to train the small model. To transfer the knowl-

edge from the large model to the small model, we still follow
the same training steps to train the lightweight model. The
small model Ms(S, TA) is eventually obtained.

The implementation procedure is shown in Algorithm 1.
Stage 2.1, Stage 2.2, and Stage 3 contain the same data
preparation and training procedure. The training framework
of these three periods is illustrated in Fig. 4. The training
loss consists of a supervised loss from the labeled source
data and an unsupervised loss from the unlabeled target data.
The prior-guided curriculum learning module is utilized to
generate more accurate pseudo labels. The masked copy-paste
module provides a set of true labels to reduce the proportion
of pseudo-labels in training loss. Instead of updating the
pseudo-labels and augmented images at each training epoch,
we choose to update data only once at the initialization of
each period. The detection model can stably learn features of
true labels in this way.

B. Prior-Guided Curriculum Learning

In this section, we propose a Prior-guided Curriculum
Learning module (PCL) to improve the accuracy of pseudo
labels. Since the prediction confidences of simple examples are
much higher than that of hard examples, PCL corrects pseudo
labels by assigning different difficulties of examples adaptive
thresholds instead of a constant threshold. First, we use prior
knowledge of MAV detection to partition pseudo labels of
the target dataset into subsets of different difficulties. Second,
we allocate adaptive thresholds to pseudo labels in different
subsets. The details are as follows.

1) Dataset Partition: How to evaluate the detection dif-
ficulty of targets is the key issue for curriculum learning.
We propose a difficulty matrix to cluster different categories
of a MAV dataset. Many factors influence the detection of
MAVs, such as the target size, local contrast, and background
complexity. The calculation of the difficulty matrix is shown
in the following.

Target size. The target size influences the MAV detec-
tion performance especially when MAVs are extremely small
objects in images. The target area is a bounding box with a
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Fig. 5. Schematic diagram of the target area At and local background area
At. The yellow area and the blue area represent At and Ab, respectively.

height ht and a width wt. We select the target size m ts as a
difficulty metric:

m ts = htwt. (1)

Local contrast. The contrast between the local background
and the target area is also another factor that influences the
detection performance. The schematic diagram of the target
area and local background area is shown in Fig. 5, where Ab
and At represent the total pixels in the local background area
and target area, respectively. We define Nb as the number of
pixels in Ab, which can be represented as

Nb = hbwb − htwt, (2)

where hb and wb are the height and width of the local
background area. We select the local contrast m lc between At
and Ab as another metric

m lc =

√√√√ 1
Nb

∑
(i, j)∈Ab

(I (i, j)
b − I t)2, (3)

where I t denotes the average intensity of the grayscale target
area, and I (i, j)

b represents the pixel I (i, j) in the local back-
ground area.

Background complexity. The scenes of MAVs can be
diverse, such as skies, buildings, and mountains. The back-
ground complexity mbc has a great influence on the detection
results. mbc is defined as

mbc =

√√√√ 1
Nb

∑
(i, j)∈Ab

(I (i, j)
b − I b)2, (4)

where I b represents the average intensity of the local back-
ground area.

We use the difficulty matrix to classify the MAV targets
into 4 types: Small Targets (cst), Low-Contrast images (clc),
Complex Backgrounds (ccb), and Simple Examples (cse). The
classification criteria are as follows:

ct =


cst , m ts ≤ τts,

clc , m ts > τts, m lc ≤ τlc,

cse , m ts > τts, m lc > τlc, mbc ≤ τbc,

ccb , m ts > τts, m lc > τlc, mbc > τbc,

(5)

where ct represents the difficulty category of a target, τts, τlc
and τbc are the thresholds for difficulty matrix m ts, m lc and
mbc, respectively. When the target has a small area, the target
type is to be cst without the consideration of the other two
indexes. Thus there are four types of targets instead of eight
types. The thresholds τts, τlc and τbc are set to 16 × 16, 10,
and 10, respectively.

Some examples of the classification results are shown in
Fig. 6. The MAVs in the category of small targets are more
ambitious than other examples because they are extremely
small objects in images. Compared to other categories, the
examples in the low-contrast category are not easily dis-
cernible from the local backgrounds. The category of simple
targets is the easiest to be detected. The samples have the
simplest backgrounds and the highest contrast between the
foregrounds and the backgrounds. The backgrounds of exam-
ples in the complex background category are more complex
than other categories, leading to the detection difficulty.

2) Adaptive Threshold Adjusting: Pseudo-labels of different
categories should be assigned adaptive thresholds instead of
constant thresholds. Inspired by the work FlexMatch [71]
which is used for semi-supervised image classification, we pro-
pose an adaptive threshold adjusting algorithm to tackle the
cross-domain MAV detection issue. A set of candidate pseudo
labels with confidence threshold τmin are separated into differ-
ent difficulty categories. The relative difficulty σt (c) for each
category is defined as

σt (c) =
1
Nc

Nc∑
n=1

1(pyn > τmax), (6)

where pyn is the output probability, Nc represents the number
of pseudo labels in category c and τmax is the maximum
confidence threshold. The adaptive threshold τt (c) is defined
as

τt (c) = max
{

σt (c)
max σt

τmax, τmin

}
. (7)

After obtaining the threshold for each category, the pseudo
labels will be corrected for training.

C. Masked Copy-Paste Augmentation

In this section, we propose a module called Masked
Copy-paste Augmentation (MCA) to generate true labels on
target images and reduce the noise caused by pseudo-labeling.
Traditional copy-paste algorithms [72], [73] need to use seg-
mentation masks as one of the inputs and mainly focus on
supervised object detection. There have not been copy-paste-
based methods for unsupervised cross-domain object detection
yet. Our masked copy-paste algorithm only requires bounding
boxes of the targets instead of segmentation masks.

Fig. 7 illustrates the masked copy-paste augmentation
algorithm. Since MAV targets are salient in the local areas,
we use saliency segmentation [74] to obtain the segmentation
masks of cropped MAV images. To guarantee the style con-
sistency of MAV cropped images and target images, we use
Poisson Merging [75] to merge two images and generate
harmonious augmented target images. Then the MAVs pasted
on the target images have true labels. Instead of utilizing the
cropped images in the source dataset, we collect a set of
MAV images from the Internet, cause MAVs in these images
are more salient to generate precise segmentation masks. The
reason that we adopted the additional dataset instead of the
source dataset is that the precise masks can help the network
adapt to the target domain better.
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Fig. 6. The four categories generated by the difficulty matrix from our M3D-Real dataset. Here, we use the grayscale image for the calculation of the four
categories. Since the area of a small target is only 16 × 16, the enlarged samples are not clear in the figure.

Fig. 7. Masked copy-paste augmentation algorithm.

The pipeline of the masked copy-paste augmentation mod-
ule is shown in Algorithm 2. The cropped MAV images
with ground truth are randomly pasted on the unlabeled
target images. Then the true labels can guide the detectors
to identify MAVs from backgrounds. Besides, the true labels
keep the same sizes as the pseudo labels. Thus the augmen-
tation algorithm can also help the detectors adapt to the size
distributions of MAVs in the target domain.

As shown in Fig. 4, the training loss L contains a supervised
loss Ls and an unsupervised loss Lu . After data augmentation,
the labels of target data contain not only the pseudo labels but
also the true labels. Then the training loss contains a new
supervised loss Lt from truly-labeled MAVs on target images,
which can be represented as

L = Ls + αLu + βLt , (8)

Algorithm 2 Masked Copy-Paste Augmentation Algorithm
Input: MAV cropped images I and bounding boxes, Target
images T with pseudo labels Y p

T
Parameter: Paste times J , the number NT of target images
with pseudo labels
Output: Augmented target images TA with true labels Y t

T and
pseudo labels Y p

T
1: Segment MAV cropped masks of cropped images.
2: for each n ∈ [1, NT ] do
3: Randomly choose one pseudo label in y p

Tn
;

4: Randomly choose J MAV cropped images;
5: for each j ∈ [1, J ] do
6: Keep the size of I j consistent with y p

Tn
;

7: Randomly choose the center of I j in the image Tn;
8: Paste resized I j with its mask on Tn;
9: Calculate the new bounding box y j of I j ;

10: Add the true label y j into yt
Tn

;
11: end for
12: Obtain augmented image TAn and its true labels yt

Tn
;

13: end for
14: return augmented target images TA and true labels yt

T .

where α and β are trade-off parameters. By doing this, the
masked copy-paste augmentation module can significantly
eliminate the pseudo-label noises and help the model learn
the features between MAVs and backgrounds.

V. EXPERIMENTS

A. Experimental Setup

To verify the effectiveness of our method, the experi-
ments are conducted on three types of domain adaptation
tasks: simulation-to-real adaptation, cross-scene adaptation,
and cross-camera adaptation, respectively. The comparison of
these three tasks is shown in Table IV. Benefiting from the
diversity of data, our M3D dataset is utilized to build three
types of tasks. All the target domains only contain realistic
images to meet the requirements for real-world applications.
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TABLE IV
THE COMPARISON OF DIFFERENT TASKS IN OUR BENCHMARK

1) Simulation-to-Real Adaptation Benchmark: The M3D-
Sim-Normal subset and M3D-Real-Target subset are chosen
to study the simulation-to-real adaptation problem. The huge
style and scene discrepancies between the simulation and
the realistic domain can effectively validate the adaptation
methods. Both the source dataset and the target dataset contain
a large amount of data and challenging scenes.

2) Cross-Scene Adaptation Benchmark: In this benchmark,
we choose the M3D-Real-Source subset and the M3D-Real-
Target subset as the source and the target domain. The source
images and the target images are captured by the same camera.
The only difference between these two sets is the backgrounds
of MAVs. Thus this task can help to verify the cross-scene
adaptation without the perturbation of the devices.

3) Cross-Camera Adaptation Benchmark: Drone-vs-Bird
dataset [21] mainly focuses on small MAV detection but with
a fixed camera. Due to the difference between the M3D dataset
and the Drone-vs-Bird dataset, we choose these two datasets
to study the cross-camera adaptation (M3D-Real→Drone-vs-
Bird) problem. The videos in this dataset are extracted to a
set of images every 5 frames and randomly separated into
the training set, validation set, and testing set, which contain
13,318, 1,902, and 3,807 images, respectively.

These three tasks are challenging and worthy of study.

B. Implementation Details

Following the work [19], [43], we choose YOLOv5 as
the backbone model. We choose the YOLOv5x as the large
model and the YOLOv5s as the small model. The images are
resized to 640 × 640 before training. The learning rate for
the source model is set at 0.01. During the whole adaptive
training procedure, the learning rate is set to 0.002. Both the
large and small source models are trained for 50 epochs with
a batch size of 32 on 4 GPUs and 1 GPU, respectively. During
the large-to-small model training process, the detection model
is trained for 30 epochs at each training period. Each target
image is pasted with truly-labeled MAVs 3 times (J = 3). The
setting is similar to the result reported in [70]. The width wb
and the height hb of the local background area are chosen to
be 1.5 times the width wt and the height ht of the target area.

We use mAP(%) as the main evaluation metric when
IOU = 0.5. We also compare the detection results with
the Source Only way (trained on source domain) and the
Oracle way (trained on target domain) to evaluate the improved
performance of domain adaptation algorithms. Thus we adopt
the Adaptation Gain ρ in [19] as the quantitative evaluation
index. The calculation of ρ is represented as

ρ =
mAP(θa) − mAP(θ s)

mAP(θo) − mAP(θ s)
× 100%, (9)

where θa , θ s , and θo represent the adaptation model, Source
Only model, and the Oracle model, respectively. The Source
Only method means that the detection model is only trained on
the source dataset. Oracle method represents the model trained
on the target dataset.

C. Main Results

The main results of the three adaptation tasks are shown as
follows. NSN w/o teacher represents the detection results of
our NSN method without the large model.

1) Simulation-to-Real Adaptation: We report the
simulation-to-real adaptation results in Table V. Benefiting
from the diversity of our simulation dataset, we can observe
that the Source Only model achieves 39.9% mAP, which
is much higher than the Source Only model trained by the
M3D-Real-Source subset. However, the baseline method
SimROD only improves the detection performance by 1.2%
due to the huge domain gap between the simulation and real
datasets. In particular, our NSN model exceeds SimROD
by 5.8% on the task of simulation-to-real adaptation. This
demonstrates the effectiveness of our prior-guided curriculum
learning and masked copy-paste augmentation modules.

From Table V, we can find that most state-of-the-art meth-
ods perform even poorer than the Source Only method. This
phenomenon does not happen in the other two adaptation tasks.
The reason for degradation is as follows.

First, the self-training-based domain adaptation methods are
easily affected by the pseudo-label noises. The inaccuracy of
the pseudo labels will increase when meeting smaller MAVs
under more diverse backgrounds. Due to the large gap between
the simulation domain and the reality domain, the noises of
the pseudo labels are more challenging in this scenario. If the
noises exceed a certain level, the model will get worse and
worse as the training continues. Therefore, the influence of
noises makes the detection networks confused and causes poor
detection performances. As shown in Table V, many methods
obtain poorer performances than the Source Only method.
Second, the SimROD method tries to solve this problem
by introducing a teacher-student model to take advantage
of the large model to reduce the noise. Thus, the SimROD
method performs better than the SimROD w/o teacher method.
However, the improvement ability is still limited because
the pseudo-label noises are more complex when the targets
are MAVs. Finally, the reason that we designed the noise
suppression network is to solve this problem. We tackle this
problem from two approaches. On the one hand, we use the
masked copy-paste augmentation module to help the detection
model fully adapt to the backgrounds in the target domain.
On the other hand, we use the prior-guided curriculum learning
module to improve the precision of the pseudo labels.
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TABLE V
THE SIMULATION-TO-REAL ADAPTATION PERFORMANCE

OF DIFFERENT METHODS

TABLE VI
THE CROSS-SCENE ADAPTATION PERFORMANCE

OF DIFFERENT METHODS

2) Cross-Scene Adaptation: The cross-scene adaptation
results are shown in Table VI. The M3D-Real dataset contains
plenty of scenes and is captured by a moving camera. Even if
there is no cross-device problem to be solved, the cross-scene
adaptation of the M3D dataset is still a challenging issue.
The Source Only model only achieves 28.7% mAP on the
target dataset, which indicates that the MAV detection model
suffers from significant domain discrepancy. The detection
improvement of our method is 21.8%. Among all the com-
parison methods, AsyFOD [53] has the best performance and
achieves 47.9% mAP on this task, which is still lower than
our proposed method. Our NSN method exceeds the baseline
algorithm of 3.7% on the task of cross-scene adaptation.
Furthermore, the simulation-to-real adaptation and cross-scene
adaptation tasks contain the same target dataset M3D-Real-
Target, thus we compare the detection results of these two
tasks. We can observe that even though the Source Only model
of cross-scene adaptation is lower, the final adaptation result
and adaptation gain are much higher than the simulation-to-
real adaptation. The reason is that the pseudo-label noises
are more influenced by the huge style differences in the
simulation-to-real task and make the detection model more
confused. Our method can perform better on the simulation-
to-real task when combined with adversarial training modules.
In this paper, we pay more attention to the real-to-real issue.

3) Cross-Camera Adaptation: There are huge differences in
the target size and backgrounds of images between the M3D-
Real dataset and the Drone-vs-Bird dataset. The cross-camera

TABLE VII
THE CROSS-CAMERA ADAPTATION PERFORMANCE

OF DIFFERENT METHODS

adaptation performance of different methods is shown in
Table VII. Thus the detection result is low when only using the
source data, which is only 31.9%. Compared to the SimROD
algorithm, our method achieves a huge improvement of 11.3%
on the task of cross-camera adaptation. The performance of the
small model is significantly improved by 18.9% with the help
of the large model. Our method achieves higher adaptation
gain than other tasks because some images in the Drone-vs-
Bird dataset are shot under a still camera, thus the detection
model can adapt to the new environments faster and perform
better on the target domain.

After comparing the results of these three tasks, we can
conclude that the pseudo-labeling technique is more suitable
for dealing with scene-to-scene and real-to-real adaptation
issues. Our method can significantly reduce the pseudo-label
noises and increase the adaptation performance.

D. Qualitative Analysis

The qualitative comparison of different methods is shown
in Fig 8. The detection results on target testing examples in
the Drone-vs-Bird dataset are presented in the figure. The
comparison consists of three methods, which are Source Only,
SimROD, and NSN (Ours) methods. When only the Source
Only method is adopted, the detection model cannot detect
MAVs and wrongly classify other objects as MAVs. Even
though the baseline method SimROD detects some MAVs in
the images, there are still some tiny MAVs not detected. Our
method significantly improves the detection performance of
missed targets with the help of true labels generated by our
masked copy-paste augmentation algorithm. Furthermore, our
method can also help to reduce the wrong detection rate benefit
of the PCL module.

E. Ablation Study

1) Ablation Study of Different Modules: The ablation study
is mainly conducted on the task of cross-camera adaptation.
Table VIII shows a comprehensive comparison of the con-
tributions of different modules in our NSN method. First,
with the participation of the large model, the improvement
of the adaptive small detection model is further increased
from 10.7% to 29.6%. Second, the MCA module improves
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Fig. 8. The qualitative comparison of different methods on the cross-camera adaptation task.

TABLE VIII
ABLATION STUDY ON THE TASK OF CROSS-CAMERA ADAPTATION. THE

LM, PCL, AND MCA REPRESENT THE LARGE MODEL, PRIOR-GUIDED
CURRICULUM LEARNING MODULE, AND MASKED COPY-PASTE

AUGMENTATION MODULE, RESPECTIVELY

the performance of the small model by 9.2%. After the small
model owns the knowledge of the large model, the MCA
module still contributes the improvement of 10.3%. Finally,
the PCL module is also indispensable. For example, if we
skip this module, the performance of the purely small model
drops by 1.5%, and our NSN method drops by 1.0%. The
integration of these modules is more efficient than individual
modules.

2) The Choice of Cropped Images for Data Augmentation:
In the masked copy-paste augmentation module, we use an
additional saliency dataset with 2,113 images as cropped
images, which can be downloaded from our GitHub. Some
examples are shown in Fig. 7. Compared with the examples
in the source dataset (see Fig. 6), the MAVs in the saliency
dataset are bigger and more salient enough for saliency seg-
mentation. We conduct two experiments to show the design
of this module.

First, we compare our method using the additional salient
images with the cropped images whose widths exceed 50 pix-
els from the source dataset. To reduce the influence of other
modules, we only adopt the MCA module for comparison.
The detection results are shown in Table IX. When we use the
cropped images directly from the source dataset, the adaptation
achieves 40.6% mAP, which is smaller than the training with
the saliency dataset. The reason is that the segmentation masks
of small objects are not easily obtained automatically from the
saliency segmentation algorithm. If we use all the images from
the source dataset, the detection results will drop deeply due

TABLE IX
THE ABLATION STUDY OF THE MASKED COPY-PASTE MODULE

to the inaccurate masks. In conclusion, when the MAVs in
the source dataset are not big and salient enough for saliency
segmentation, it is suggested to choose the additional dataset
for utilization. Our proposed masked copy-paste module could
work well whether the cropped images come from the source
dataset or an additional dataset as long as we can obtain the
precise masks of the targets.

Second, to guarantee fairness, we also show the experi-
mental results of SimROD when expanding the source dataset
with the additional salient dataset during training. As shown
in Table IX, the detection performance drops to 35.5% when
more salient images are added into the training period. The
reason is that the MAVs in the salient images take up a large
area. The distribution of the saliency dataset is different from
the source dataset and the target dataset. The additional salient
dataset can only play a significant role in our masked copy-
paste module.

3) Varying of Different Hyper-Parameters: The proposed
modules contain a few hyper-parameters that could influence
the detection results. We conduct two experiments to show the
effect of different values of the J and τmax . To ensure that the
results are not disturbed by the participation of other modules,
the experiments are independently conducted on the modules
themselves. The detection results are shown in Table X.

When we change the times of the copy-paste module, the
detection model achieves the highest result when J equals
three. This phenomenon is consistent with the experiment
results reported in [73]. The reason is that when the copy-paste
time is too high, the detection is easily overfitting. We also
conduct experiments of varying the value of τmax . The detec-
tion results in Table X show that the PCL module can achieve
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TABLE X
THE EXPERIMENTS OF VARYING THE VALUES OF DIFFERENT

HYPER-PARAMETERS ON THE TASK OF CROSS-CAMERA ADAPTATION

Fig. 9. The confidence distribution of pseudo labels from different categories
during the training process.

the best performance when τmax equals 0.75. As for another
hyper-parameter τmin , we follow the default setting 0.25 of the
Yolov5 network for stable performances in different scenarios.

F. Experimental Analysis

1) The Influence of Adaptive Thresholds: In this section,
we study the influence of adaptive thresholds on pseudo labels.
Furthermore, we use Fig. 9 to prove the effectiveness of the
PCL module and how it influences the choice of pseudo labels
at different training stages. The confidences of pseudo labels
from different difficulty categories show different distributions.
The simple category tends to have pseudo labels of high
confidence. As the progress of training, the confidences of
pseudo labels become larger and all the distributions move
towards the right side of the figure. The adaptive thresholds
generated by our PCL module also gradually increase to
choose more reliable pseudo labels.

2) The Effectiveness of the Data Augmentation: To show
the effectiveness of our data augmentation module, we also
compare our method with other data augmentation methods.
To reduce the influence of other modules in our method,
we only adopt the MCA module in the experiment. The

Fig. 10. The augmentation results of CutMix and MCA (Ours) on
Drone-vs-Bird dataset. Original images only contain one MAV which is
enclosed within a blue box.

TABLE XI
THE CROSS-CAMERA ADAPTATION PERFORMANCE OF DIFFERENT

AUGMENTATION METHODS

Fig. 11. The images generated by texture randomization in M3D-Sim subset.
The walls in Unreal Engine dynamically change their textures during data
collection.

results are shown in Table XI. When we replace our MCA
module with CutMix, the detection result drops from 41.1%
to 33.0%, proving the significance of our data augmentation
module. The reason is that the local background doesn’t
change when pasting the cropped MAV images on the target
images directly. The differences between CutMix and MCA
are shown in Fig. 10. Our augmentation module can generate
more harmonious results. The detection model could not learn
the local background features of target images when using
CutMix augmentation.

3) Texture Randomization: M3D-Sim subset contains nor-
mal images and images generated by texture randomization.
The visual differences between these two types of images can
be seen in Fig. 2 and Fig. 11. Texture randomization is one
way to reduce the gap between simulation and reality, thus we
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TABLE XII
THE DETECTION PERFORMANCES TRAINED ON DIFFERENT SUBSETS IN

THE M3D-SIM DATASET

TABLE XIII
THE DETECTION PERFORMANCES TRAINED ON DIFFERENT TRAINING

SUBSETS OF THE M3D DATASET. THE M3D-REAL-S AND M3D-REAL-
T REPRESENT THE M3D-REAL-SOURCE AND M3D-REAL-TARGET

SUBSETS, RESPECTIVELY. THE DETECTION RESULTS ARE
REPORTED ON THE TESTING SUBSETS

also conduct experiments to verify the effectiveness of this
approach. The results are shown in Table XII. We train the
detection model by only using the normal data, randomized
data, and all the data, respectively. The model is tested
on the M3D-Real-Target dataset. The results of these three
approaches are 39.9%, 22.2%, and 43.5%, respectively. It can
be concluded that texture randomization can indeed improve
detection performance in a supervised way, but its ability
is limited. Besides, this type of method can improve the
generalization ability of the detection model but cannot help
the model adapt to new environments.

4) Computational Cost: The computational cost can be
divided into the training period and the inference period. First,
the training time of our method takes a few hours more than
the baseline SimROD method. Take the task of cross-camera
adaptation as an example. The training of the SimROD method
takes 45 hours and our method costs 47 hours. The additional
two hours are cost by the MCA and the PCL module. Second,
the baseline SimROD method and our NSN method contain
the same detection model, thus the inference time is the same
as the Yolov5s model.

G. The Universal MAV Detection Model Based on M3D
Dataset

As a dataset containing diverse images, the M3D dataset
can be chosen as the common dataset for MAV detection.
This section shows the experiment results when using different
training subsets of M3D for training. All the experiments still
choose the Yolov5s network as the MAV detection model.
The models are tested on the testing set of M3D-Real-Source,
M3D-Real-Target, and M3D-Real, respectively. When we use
the whole training set of the M3D dataset as the training
dataset, the detection model achieves 88.3% mAP on the
testing set of M3D-Real. The results can serve as the precision

of the Oracle model for study in the future. MAV detection
is critical for real-world applications. Thus the results can
also be utilized as the universal MAV detection model for
the community.

VI. CONCLUSION

This paper benchmarks the cross-domain MAV detection
problem. We first propose a Multi-MAV-Multi-Domain (M3D)
dataset and construct a novel domain adaptive MAV detection
benchmark consisting of three representative domain adap-
tation tasks, i.e., simulation-to-real adaptation, cross-scene
adaptation, and cross-camera adaptation. Moreover, we pro-
pose a novel noise suppression network with a prior-guided
curriculum learning module, a masked copy-paste augmenta-
tion module, and a large-to-small model training procedure.
Our method significantly reduces the pseudo noises and
achieves real-time MAV detection. The results of extensive
experiments and ablation studies demonstrate the effectiveness
of the proposed method. We have released the dataset, hoping
our study could advance the cross-domain MAV detection
research.

Due to the large domain shift of MAV detection, there is
still a huge improving space to achieve the performance of
supervised learning. We will consider the spatial and temporal
information in future work.
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