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Aerobatic Tic-Toc Control of Planar Quadcopters
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Abstract—This letter studies aerobatic tic-toc control of quad-
copters. Tic-toc control enables rotorcraft to fly almost in the
vertical plane rather than the horizontal plane. It is one of the most
challenging manoeuvrers to achieve autonomously. The problem
has to our knowledge not yet been studied for quadcopters. Study-
ing it could expand their flight envelope and improve their perfor-
mance in extreme, aerobatic flight tasks. In this letter, we employ a
deep deterministic gradient policy approach to train reinforcement
learning (RL) controllers based on carefully designed rewards. The
obtained RL controllers are shown to generate two flight modes,
spin and tic-toc. We analyse the properties of these flight modes
and screen out unfavourable RL controllers. The qualified RL
controller is then enhanced by combining it with PID and LQR
controllers which achieves better flight performance and enables
the quadcopter to track a moving reference point and recover
to hovering flight status. Physical simulations using Simscape are
presented to verify the proposed approach.

Index Terms—Flight control, reinforcement learning, variable-
pitch propeller quadcopter.

I. INTRODUCTION

QUADCOPTER unmanned aerial vehicles (UAVs) are
widely used due to their simple mechanical design

and control structures. Nowadays, an increasing amount of
tasks pose high requirements on the manoeuvrability and anti-
interference ability of quadcopter UAVs. Variable pitch propeller
(VPP) quadcopters are a relatively new type of quadcopter, that
can exhibit performances superior to the conventional fixed-
pitch ones. Specifically, a VPP can control its pitch angle by an
actuator, thereby generating forces in either positive or negative
directions. As a result, a VPP quadcopter can fly upside-down,
which is impossible for fixed-pitch quadcopters. Therefore, VPP
quadcopters exhibit great potential in many applications that
require high-performance flight.

Manuscript received September 9, 2021; accepted December 23, 2021. Date
of publication January 13, 2022; date of current version January 25, 2022. This
letter was recommended for publication by Associate Editor S. Mohan and Editor
P. Pounds upon evaluation of the reviewers’ comments. (Corresponding author:
Shiyu Zhao.)

Zhikun Wang is with the Department of Automatic Control and Sys-
tems Engineering, The University of Sheffield, S10 2TN Sheffield, U.K.,
and also with the Westlake University, Hangzhou 310012, China (e-mail:
zwang119@sheffield.ac.uk).

Roderich Groß is with the Department of Automatic Control and Systems
Engineering, The University of Sheffield, S10 2TN Sheffield, U.K. (e-mail:
r.gross@sheffield.ac.uk).

Shiyu Zhao is with the School of Engineering, Westlake University, Hangzhou
310012, China, and also with the Institute of Advanced Technology, Westlake
Institute for Advanced Study, China.

Digital Object Identifier 10.1109/LRA.2022.3142730

Fig. 1. A typical tic-toc (also known as ‘the pendulum’) manoeuvrer of the
devil sticks.

Although VPP quadcopters have received increasing attention
in recent years, studies mainly focus on fault-tolerant control [1],
[2]. The great potential in manoeuvring flight has not been well
explored up to now. In fact, VPP quadcopters are suitable for a
variety of aerobatic flight manoeuvres. Exploring these manoeu-
vres could broaden the flight envelope and help address complex
flight scenarios. They could be relevant in entertainment and
military applications as well as in applications requiring aircraft
to navigate narrow confined spaces, all of which have received
increased attention in recent years.

Among aerobatic flight manoeuvres, tic-toc is one of the
most challenging to be achieved autonomously. The tic-toc
manoeuvre attempts to fly the UAV in a vertical plane rather than
a horizontal plane. As the UAV is not able to fly steadily in a
vertical plane due to the lack of vertical lift, it has to periodically
swing back and forth to approximately keep a vertical flight pose.
Such a periodic movement can be observed in juggling (see
Fig. 1). It is a typical aerobatic manoeuvre of helicopters [3].
The work in [4], [5] realized autonomous tic-toc control of a
helicopter using inverse reinforcement learning. Such a method,
however, requires data of tic-toc trajectories generated by expert
pilots in advance.

Up to now, an autonomous tic-toc manoeuvre of a quadcopter
has not yet been reported in the literature. Moreover, how to
realize it by self-learning without data generated by a skilled
pilot is still an open problem. This paper studies this problem.
As the dynamical system is extremely complex, we consider
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Fig. 2. Schematic diagram of the whole period of the VPP quadcopter tic-toc
manoeuvrer.

a simplified planar quadcopter model to simulate a VPP quad-
copter [6], [7]. Even though the dynamic model is simplified
to be two-dimensional, we still face many of the challenges. In
particular, as the tic-toc movement is not around any equilibrium
point, equilibrium-based control approaches are not applicable.

As far as the authors are aware, the tic-toc manoeuvre has
not been achieved by any conventional control approaches in
the literature. In this paper, we design controllers for tic-toc
aerobatic flight for planar VPP quadcopters via reinforcement
learning (RL). RL is a method that enables an agent to use the
reward obtained from its interactions with the environment to
generate its control policy [8]. It has received significant atten-
tion in recent years due to its potential to address problems that
are challenging to solve by conventional control approaches [9],
[10]. Although RL has been applied to the control of multi-rotor
drones, it is mainly used to achieve flight near the equilibrium
point, such as throw-and-hover [11] and attitude control [12].

We use the deep deterministic gradient policy (DDPG) ap-
proach to train RL controllers based on carefully designed
rewards. The obtained RL controllers are shown to generate
two flight modes: spin and tic-toc. The flight performance of
either mode is carefully analysed. Then, we evaluate and screen
out unfavourable RL controllers by a non-dominated sorting
approach [13]. Finally, we extend the remaining RL controller
by introducing a compensation control, so that the tic-toc motion
can follow a moving reference point, and an LQR-based recov-
ery control, so that the quadcopter can recover from tic-toc to
hovering flight. A series of studies are conducted in simulation
to verify the proposed approach.

II. PROBLEM STATEMENT

The planar VPP quadcopter is modelled as a stick with uni-
form mass distribution as illustrated in Fig. 2. A forcef is applied
at one end of the stick. Its direction is always perpendicular to the
stick. Its sign can be positive or negative (see Fig. 3). We consider
only a single force as doing so is already sufficient to achieve
the tic-toc manoeuvre as demonstrated by Fig. 1. Interestingly,
a single force acting on the stick end is not sufficient for a

Fig. 3. A VPP actuator can use spinning speed and propeller pitch angle
to change the required force and torque. A counter-clockwise rotating VPP
generates (a) a positive force with a positive propeller angle and (b) a negative
force with a negative propeller angle.

quadcopter to hover. Tic-toc is one of a few flight modes that a
quadcopter could use to stay in the air under these constraints.

Let d be the distance between the centre point and a reference
point (i.e., the red point in Fig. 2). The control objective is to
design f such that d is as small as possible. As there are no
equilibrium states, it is challenging to formally define the target
state. We will later quantify the objective by using rewards when
designing RL algorithms.

In the following, the states of the stick and the dynamic model
are presented. The position and velocity of the centre point of
the stick are [x, z] and [u,w], respectively. The attitude of the
planar quadcopter is described by θ, which is the angle between
the stick and the x-axis. The spinning rate is q. Let m and l
denote the mass and half length of the stick, respectively, I the
moment of inertia, g the gravitational constant, and fT and τT
the total thrust and torque, which are given by

fT = f,

τT = fl. (1)

Then, the overall state vector is [x, z, θ, u, w, q] and the dy-
namic model is ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ż

θ̇

u̇

ẇ

q̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

u
w
q

−fT sin θ/m
fT cos θ/m− g

−τT /I

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2)

III. REINFORCEMENT LEARNING CONTROLLER: TRAINING

AND ANALYSIS

A. Algorithm Structure

We apply the DDPG approach reported in [9] to train the RL
controller. The approach comprises two parts, an actor Neural
Network (NN) and a critic NN. The actor NN is an agent
that works in the environment whereas the critic NN evaluates

Authorized licensed use limited to: Westlake University. Downloaded on March 14,2022 at 07:57:03 UTC from IEEE Xplore.  Restrictions apply. 



2142 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 4. The neural networks of the DDPG training algorithm.

the performance of the agent. A deterministic policy gradient
algorithm is used to update the actor NN. The critic NN is a
value based deep Q-learning NN that uses state feedback and
action as input while its output is a temporal-difference error
used to evaluate the performance of the actor.

The NN structures are shown in Fig. 4. Subsequent layers
are fully connected. The output of the actor NN is the force f
that acts at the end of the planar quadcopter. There are 7 state
feedbacks which are obtained by the agent from its interaction
with the environment: [sin(θ), cos(θ), θ̇, x, z, ẋ, ż]. The state
feedback quantities are also used to design rewards. The whole
NN is built in the Matlab Deep Reinforcement Learning toolbox
environment.

B. Training Process

As there are no target equilibrium states, we must design
a representative reward to reflect our control objective. The
rewards are explained in the following. Positive and negative
rewards, respectively, are used to encourage and penalize certain
behaviour.

1) To reward the centre point of the quadcopter for approach-
ing the target location, we design the following distance
deviation penalty function:

r(d) = −0.1 d2 − 100dfar,

TABLE I
PLANAR QUADCOPTER PARAMETERS

where

dfar =

{
0, if d < 4;

1, if d ≥ 4.

Here, d is a non-negative distance value and dfar gives a
strong penalty when the centre point gets too far away
from the reference point. When dfar = 1, the episode is
stopped.

2) To reward the quadcopter for assuming a vertical attitude
(i.e. θ close to −π/2), we use reward function

r(θ) = −0.01(θ + π/2)2,

where θ ∈ [−π, π).
3) To minimize the required force magnitude, a force penalty

is designed as

r(f) = −0.01f2.

4) To encourage the quadcopter to remain in the air for a
long time, we increase the reward with the flying time by

r(t) = 0.1t,

where t is the time elapsed since the start of the episode.
In total, the reward function is

R = r(d) + r(θ) + r(f) + r(t). (3)

For each episode, the quadcopter starts from the initial hover-
ing state, which is x0 = 0, z0 = 0, θ0 = 0. The target reference
position is randomly generated, xt, zt ∈ [−1, 1]. The latter helps
strengthening the RL controller’s generalization ability and sta-
bility [14]. The parameters of the quadcopter used for training
are provided with subscript o in Table I. Within each episode, the
quadcopter tries to reach, and remain close to the target position.
If the quadcopter flies too far away (more than 4 m), the episode
will be marked as a failure and stop. We train the DDPG agent
for 30000 episodes, with each episode lasting at most 10 s with
0.02 s sampling time. All episodes whose returns are greater
than −50 are saved for further analysis.

C. Analysis of Results

The trained RL controllers exhibit two flight modes. The first
is a spin mode, where the planar quadcopter spins around a fixed
position, therefore θ varies from 0 to 360 degrees (see Fig. 5).
The second is a tic-toc mode, where the planar quadcopter
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Fig. 5. Results of a quadcopter holding its position by using the spin mode
neural network. (a) shows the quadcopter’s motion during the first 2 seconds,
whereas (b) shows the state evolution during the full 20 seconds duration. The
colour bar represents time. It takes the quadcopter about 2 seconds to reach the
manoeuvre phase.

swings around a point back and forth, therefore θ is constrained
in a bounded interval (see Fig. 6).

In either of the flight modes, the entire flight can be split into
two phases. The first is a settling phase, in which the planar
quadcopter starts from a horizontal attitude and then gradually
converges to a steady periodic motion. During this phase, there
will be large position and attitude deviations. The second is
a steady periodic phase, in which the states vary in a steady
periodic manner.

In order to quantify the settling time, we use trigonometric
functions to fit the steady periodic curve. As illustrated in Fig. 7,
the distance d between the quadcopter centre point and the
reference point is shown by the blue curve. We can fit the blue
curve in the steady periodic phase by

df (t) = A0 +A1 cos(ωt) +A2 sin(ωt).

Once |d(t)− df (t)| remains below a threshold (for example,
0.1) the settling phase ends and the corresponding time is the
settling time. We have checked all the trained controllers and

Fig. 6. Results of a quadcopter holding its position by using the tic-toc mode
neural network. (a) shows the quadcopter’s motion during the first 2 seconds,
whereas (b) shows the state evolution during the full 20 seconds duration. The
colour bar represents time. The quadcopter succeeds in switching to the tic-toc
manoeuvre with very little initialization time.

Fig. 7. Settling time quantification through comparison of the original distance
curve and the Fourier fitting curve. To avoid interference via the initialization
phase, we exclude the first 5 seconds when generating the Fourier fitting
curve. The fitting distance function shown in the figure is df (t) = 0.76 +
0.11 cos(14.46t)− 0.001 sin(14.46t), and the settling time is around 2.8 s.

noticed that it takes a longer settling time for the spin mode
(around 6 s) than for the tic-toc mode (around 3 s).

By comparing the performance of the spin and tic-toc modes
as shown in Figs. 5 and 6, the tic-toc mode does not exhibit
significant fluctuations during the settling phase and reaches the
steady periodic phase faster. In terms of space occupation, the
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TABLE II
COMPARISON AMONG THREE TIC-TOC MANOEUVRE NNS WITH DIFFERENT

SPEEDS

spin mode takes more space than the tic-toc mode (observed
from the XZ plane). In terms of required force, the spin mode
requires high force (70 N maximum) in the settling phase and
then much less force (25 N maximum) in the steady periodic
phase. As a comparison, the required force of the tic-toc mode
does not vary significantly during different phases and the max-
imum value is 50 N.

While we have incorporated an angle penalty reward function
r(θ), why could the controller still learn the spin mode? This is
because the total reward function considers other properties as
well and we stored all the RL NNs whose overall rewards were
greater than the set threshold.

IV. REINFORCEMENT LEARNING CONTROLLER: FURTHER

EVALUATION AND SCREENING

In the last section, we showed that the tic-toc flight mode
has less settling time and lower space occupation than the spin
mode. It should be noted that different training episodes can lead
to different controllers, which may all achieve the tic-toc mode
but have very different performances. The inherent diversity of
solutions (and performances) is fundamentally due to the total
reward function being composed of a mixture of metrics, and
the trained controllers may place different emphasis on different
metrics. In this section, we evaluate different tic-toc controllers
and show how to screen out solutions according to additional
metrics.

Fig. 8 shows three examples to demonstrate the performance
of different controllers. The examples could be classified to be
high-speed, medium-speed, low-speed controllers based on the
periodic time of their steady phases. The specific values of the
maximum swing angles, periodic time, and maximum forces of
these examples are given in Table II, where the parameters of
the dynamical system used for training is given in Table I. As
can be seen, the smaller the swing angle and the shorter the time
period, the larger the force that is required.

In the rest of the section, we introduce three metrics to evaluate
different RL controllers and propose a method to screen out
unfavourable ones.

A. Evaluation Metrics

To give an overall evaluation of the performance of the NN,
we use the following three metrics:

1) The first metric is the mean distance between the centre
and reference points. It is denoted as dmean.

Fig. 8. Comparison of different NNs that have similar reward value where (a)
shows a high-speed tic-toc mode NN performance, (b) shows a medium-speed
tic-toc mode NN performance and (c) shows a low-speed tic-toc mode NN
performance. It is difficult to distinguish these performances by only considering
the reward function.

2) The second metric is the maximum space occupation smax,
which is defined as

smax = max (|er| , |el|) , (4)

where er and el denote respectively the rightmost and
leftmost distance of the stick’s top end from the vertical
plane (see Fig. 2).

3) The third metric, fmax, is the maximum magnitude of
the force during the entire control process including
both settling and steady periodic phases. This metric
would be relevant for practical realizations of the RL
controller.

It must be noted that the three metrics could not be designed
as rewards during the training process. That is because they are
defined for the entire control process and can not be used for
timely feedback to evaluate the performance of the training NN
controller.

It is favourable if dmean, smax, and fmax are small; the smaller
the better.
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Fig. 9. Screening of trained NN controllers. Each axis represents a different
metric; (a) shows the point cloud of all trained NNs and (b) shows the Pareto-
efficient frontier point cloud of all trained NNs.

B. Network Screening

This subsection addresses how to screen a large number of
RL controllers based on the aforementioned three metrics.

One approach is to assign different weights to the three metrics
according to ones’ own preferences and then use a weighted
summation of the three metrics as a single metric. Since many
networks perform well on one metric but worse on another,
one overall metric may not be sufficient to choose a suitable
controller. Therefore, we use a screening algorithm to identify
the set of best NNs from all the trained NNs. Here “best” refers
to NNs that are not dominated by other NNs.

Fig. 9(a) shows all trained NNs as a point cloud in the metric
space, where the axes correspond to the three metrics dmean, smax

and fmax, respectively. Fig. 9(b) shows the corresponding Pareto-
efficient frontier.

While this method screens out a large portion of unfavourable
NNs, we can further reduce the selection based on our prefer-
ences. For example, if we want the space occupation to be as
small as possible, we could choose the bottom-left red dot in
Fig. 9(b). In addition, we can choose NNs from anywhere on the
Pareto optimal surface to meet multiple metric requirements.

V. REINFORCEMENT LEARNING CONTROLLER: AN EXTENSION

This section extends the RL controllers to further improve
their performance. In addition, a recovery controller is designed
to restore hovering flight and a NN migration method is provided
to realize the control of different dynamic models by the target
NN.

A. Trajectory Compensation

A problem of the RL controllers is that there may exist steady-
state errors between the average position of the centre point
and the reference point. We now seek to suppress this steady
error. Moreover, we seek to further decrease the maximum space
occupation smax.

We design a trajectory compensation method that uses a PID
controller to compensate the steady-state error and reduce smax.
The idea of this method is to design a swing trajectory to offset
unnecessary displacement, thereby reducing the maximum ma-
noeuvrer distance deviation. In our scenario, the error between
actual and desired trajectories is given to the PID controller as

Fig. 10. Simulation results (steady periodic phase) of the planar quadcopter
with or without trajectory compensation. The trained NN strikes a good balance
among all three objective functions (dmean, smax and fmax). (a) Shows the
simulation results of the NN controller without trajectory compensation and
(b) shows the simulation results of the NN controller with trajectory compensa-
tion. The overall maximum space occupation is decreased by 53%.

the input where the output value is the trajectory that needs to
be compensated.

Fig. 10 verifies the effectiveness of the proposed controller.
As can be seen, the compensation method can reduce the aver-
age steady-state error from [−0.54,−0.22] to [−0.05,−0.12].
Moreover, smax decreased from 0.98 m to 0.51 m. However, this
comes at the cost of the maximum force increasing from 78 N
to 165 N.

The advantage of this compensation controller is that we can
flexibly enhance the flight performance of an existing trained
RL controller according to our needs, instead of training new
RL controllers.

B. Recovery Controller System

Our trained RL controller can only achieve tic-toc flight. If the
planar quadcopter was to restore hovering flight, a new controller
would need to be designed and integrated.

We introduce an LQR controller for hovering flight control
based on a modified version of (1) and (2). The modification is
to change the single force as in (1) to two forces applied on the
two ends of the stick. As a result, (1) becomes

fT = fr + fl,

τT = (fr − fl)l,

where fr and fl are the forces acting on right and left ends of
the VPP quadcopter, respectively. Then, we linearise the system
based on the dynamic model presented in (2). A standard LQR
controller is designed based on the linearised model. The design
of the LQR controller is omitted here.

By combining such a controller with the RL controller, a
quadcopter could start from a hovering position, switch to the
tic-toc flight, and finally switch back to the hovering mode. It
should be noted that two forces are required for hovering and
only one force is needed for tic-toc. The overall control structure
is illustrated in Fig. 11.
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Fig. 11. Overall control system structure used for the narrow space passing
simulation. The structure is divided into three parts, trajectory generation (shown
in blue), controller decision (shown in red) and simulation environment.

C. Network Migration

When we train an RL controller, we need to specify a set of
parameters of the planar quadcopter such as its mass and length.
However, once we apply the trained controller in practice, the
parameters may vary across different platforms. To solve this
problem, we could adjust the force and torque generated by the
trained RL controller according to the specific parameters of the
target platform to

fn =
mn

mo
fo,

τn =
loIn
Ioln

τo, (5)

where parameters and variables with subscript o and n corre-
spond to the original and new parameters, respectively.

Substituting the migration (5) to (2) gives

fo sin θ/mo = fn sin θ/mn,

fo cos θ/mo = fn cos θ/mn,

τolo/Io = τnln/In.

Therefore, once the parameters of the standard training model
and the target model are known, we can migrate the RL controller
to the target model to make their performance consistent.

D. Simulation Validation

We study three simulation scenarios to examine the perfor-
mance of the integrated system, comprising the RL controller,
compensation controller, network migration subsystem and hov-
ering recovery controller.

The simulation is conducted in Simscape, a physical simu-
lation environment in Matlab. We discard aerodynamic forces
caused by the obstacles. Table I lists the physical parameters of
the VPP quadcopter model as used in training (with subscript o)
and simulation (with subscript n).

In the first scenario, as shown in Fig. 12, from t = 0 to t = 5,
the quadcopter switches from a hovering position to a tic-toc
flight mode. Starting from t = 5, it tracks a moving reference
point upward thereby passing a narrow passage. At t = 12, it
switches successfully back to hovering.

In the second scenario, noises and wind disturbance are con-
sidered during validation. Noise with a signal-to-noise ratio of
15 dB is added to all the feedback states. The wind disturbance
is 2 N along x-axis and 2 N along z-axis from 3 s to 6 s.

Fig. 12. Simulation results of passing through vertical obstacles with the NN
migration, where the overall maximum force was 84 N and maximum space
occupation was 0.4 m.

Moreover, actuator constraints are added to the simulation where
the maximum thrust of the actuator is limited to 25 N and the
maximum thrust changing rate is limited to 1000 N/s [15]. The
result presented in Fig. 13 indicates that our designed control
system has good robustness (green lines represent the duration
of the wind disturbance).

In the third scenario, we assume that the parameters of the
real system can not be measured accurately. The values of the
parameters used in (5) are mismatched, with different degrees
of uncertainty. In particular, these parameters are sampled from
uniform distributions within a mismatch percentage as follows
an = ar(1 + ka), ka ∈ [−b, b], where ar is the real value of the
parameter, an is the inaccurate value of the parameter used in
(5), ka is a random variable drawn uniformly from [−b, b], and
b is the model parameters mismatch percentage. We test the
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Fig. 13. Results of a VPP quadcopter in the tic-toc mode facing external
disturbances and noises.

Fig. 14. Results of a VPP quadcopter holding its position with tic-toc mode
under different parameter mismatches.

controller with different model parameters mismatch percentage
b ∈ {0.1, 0.2, . . . , 0.8}. For each tested mismatch percentage,
we repeated the simulation for 100 episodes and calculate the
average success rate. The episode is marked as success when
the agent can perform the tic-toc manoeuvrer for 5 seconds. The
result is shown in Fig. 14. It indicates that our trained controller
reliably performs the tic-toc manoeuvre if the mismatch is
not large. This suggests that the reinforcement learning based
control system has certain generalization ability to handle model
mismatches.

The findings demonstrate the potential application of the
proposed control approach. To the best of our knowledge, no
other methods has previously achieved autonomous tic-toc ma-
noeuvrer with a quadcopter model.

VI. CONCLUSION

This paper presented for the first time an RL NN controller
which was trained on a planar quadcopter model to successfully
perform the tic-toc manoeuvre. We extended the controller and

demonstrated its ability to perform position tracking and narrow
vertical tunnel passage in a simulation environment. The sup-
plementary video contains these and other demonstrations. In
this paper, flying through a narrow gap is an example to show
the potential applications of our proposed control system. Our
study aims to explore the limit of the manoeuvrability of VPP
quadcopters. It could deepen our understanding of the dynamical
features of VPP quadcopters and lead to more interesting and
practical control strategies. Future work will consider controllers
acting in more realistic scenarios and validating them on physical
quadcopters.
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