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Research into variable pitch propeller (VPP) quadcopters has seen a marked increase in recent years 
which is due to their enhanced dynamic capabilities compared to conventional fixed pitch propeller 
quadcopters. Adding actuators to control the pitch angles of the propellers increases the mechanical 
complexity and hence may increase the risk of faults. In this paper, the flight control of a centrally-
powered VPP quadcopter in the presence of a propeller fault is studied. This problem has not been 
studied in the literature. In this paper firstly the balance trajectory is analysed. The uncontrollable mode 
is identified next. Finally, a linear controller is proposed. It is shown that the yaw angle and angular 
velocity become uncontrollable in the presence of a VPP fault, yet the quadcopter can still accurately track 
a desired trajectory. It is also discovered that the quadcopter exhibits different and favourable behaviour, 
such as slow self-spinning speed. The relationship under certain parameter conditions is analysed and 
the parameter conditions that lead to zero self-spinning are identified. Our analysis could contribute to 
the development of high-performance quadcopters that are both agile and robust with respect to faults. 
Simulation results are presented to verify the theoretical findings.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Recent years have witnessed the rapid development of com-
mercial micro unmanned aerial vehicles (UAVs) across the world. 
Due to the simplicity and low cost of their mechanical and dynam-
ical systems, quadcopter UAVs have been successfully applied in 
many domains [1,2]. In the future, quadcopter UAVs are expected 
to be routinely utilised in common, day-to-day tasks, such as par-
cel delivery or passenger transportation [3]. Many of these tasks 
are safety-critical and require UAVs to achieve high flight perfor-
mance in terms of both agility and safety [4–7].

Variable pitch propeller (VPP) quadcopters are generalised vari-
ants of fixed pitch propeller quadcopters. They have attracted in-
creasing attention in recent years [8–11]. One advantage of them is 
that they have the same overall control structure as conventional 
fixed pitch propeller quadcopters. Hence, they inherit the simplic-
ity of the overall dynamical structure from fixed pitch propeller 
quadcopters, and therefore have the potential to be widely applied 
in practice.

* Corresponding author.
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The difference between a VPP and a fixed pitch propeller is that 
an actuator is used to control the pitch angle. Adding such actua-
tors remarkably enhances the flight capability of a quadcopter in a 
number of ways. Firstly, a VPP can generate forces in either upward 
or downward directions. This novel property brings benefits to the 
flight control performance. For example, a VPP quadcopter will be 
able to fly upside down steadily, which is not possible to achieve 
with a conventional quadcopter. It also enables VPP quadcopters 
to recover swiftly from largely disturbed attitudes back to stable 
hovering conditions, which is important considering the safety of 
the system. Secondly, as the thrust magnitude of a VPP is con-
trolled by adjusting the pitch angle, the control bandwidth is much 
higher than with spinning speed control, the method used by con-
ventional fixed pitch propellers to adjust their thrust magnitude. 
The drawback of adding actuators to adjust pitch angles is that it 
increases the mechanical complexity and hence may increase the 
fault rate. It is therefore important to study flight control of VPP 
quadcopters in the presence of actuator faults.

Although fault-tolerant control of quadcopters has been studied 
extensively [12–15], the case of VPP quadcopters remains largely 
unexplored. Two recent works [11,16] have studied control of 
separately-powered VPP (SVPP) quadcopters with one faulty pro-
peller. If one VPP is faulty, an SVPP quadcopter still has six in-
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Fig. 1. The schematic diagram of a quadcopter.

dependent control inputs (i.e., three motor spinning speeds and 
three pitch angles), and the entire system remains controllable. 
By contrast, our present work addresses the control of centrally-
powered variable pitch propeller (CVPP) quadcopters. For a CVPP 
quadcopter, all propellers spin at the same constant speed; they 
are driven by the same motor located at the centre of the body 
[17,18]. If one propeller is faulty, there would only be three inde-
pendent control inputs, and the entire system becomes uncontrol-
lable and hence more challenging to handle than the SVPP case.

The main theoretical contribution of this paper is to discover 
that a CVPP quadcopter can exhibit different but favourable be-
haviour such as a slow self-spinning speed in the presence of a 
propeller fault. The relationship between the self-spinning speed 
and the parameter conditions is analysed and the parameter con-
ditions that lead to zero self-spinning in the presence of one pro-
peller fault are identified. Such a discovery is favourably surprising. 
The theoretical findings are supported by analysing the equilib-
rium trajectory, identifying the uncontrollable modes, proposing 
an H∞ controller and simulating it in two validation experiments. 
The aforementioned properties make CVPP quadcopters an attrac-
tive platform and may stimulate further research and application 
in the future.

2. Problem setup

Consider a CVPP quadcopter with a “plus” configuration where 
propellers 1 and 3 rotate clockwise and propellers 2 and 4 ro-
tate counter-clockwise as shown in Fig. 1. There are two coordi-
nate frames: a global inertial frame and a body frame. The ori-
gin of the body frame expressed in the global frame is [x, y, z]T . 
The yaw-pitch-roll angles [φ, θ,ψ]T represent the rotational trans-
formation from the body frame to the global frame. The an-
gular rate of the quadcopter expressed in the body frame is 
[p,q, r]T . The linear speed of the quadcopter in the global frame 
is [u, v, w]T . The whole state vector of the quadcopter is x =[

x, y, z, φ, θ,ψ, p,q, r, u, v, w
]T

.
The translational and rotational air resistance FD and τ D , that 

oppose the motion of an aircraft, are given by

FD = −kβ

⎡
⎣ u|u|

v|v|
w|w|

⎤
⎦ , τ D = −kγ

⎡
⎣ p|p|

q|q|
r|r|

⎤
⎦ ,

where kβ and kγ are translational and rotational air resistance co-
efficients, respectively [19–21].

Overall, the dynamic model for a CVPP quadcopter is identical 
to that of a fixed pitch propeller quadcopter. The translational mo-
tion of the quadcopter is given by [22]
2

Fig. 2. The schematic structure diagram of a counter-clockwise rotating VPP.

⎡
⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż
u̇
v̇
ẇ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u
v
w

(cosψ sin θ cosφ+sinψ sin φ)u1−kβ u|u|
m

(sinψ sin θ cosφ−cosψ sinφ)u1−kβ v|v|
m

(cos θ cos φ)u1−kβ w|w|
m − g

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

and the rotational motion of the quadcopter is described by

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

ṗ
q̇
ṙ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p + q sinφ tan θ + r cosφ tan θ

q cosφ − r sinφ

q sinφ sec θ + r cosφ sec θ

qr
Iz−I y

Ix
+ u3

l
Ix

− p|p| kγ

Ix

rp Ix−Iz
I y

+ u2
l

I y
− q|q| kγ

I y

u4
l
Iz

− r|r| kγ

Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where Ix, I y , and Iz are the moments of inertia, l is the half length 
of the diagonal wheelbase of the CVPP quadcopter, m is the mass 
of the CVPP quadcopter, and g is the gravitational acceleration con-
stant. The inputs u1, u2, u3, u4 in (1) and (2) are given by

u =

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f1 + f2 + f3 + f4
f3 − f1
f4 − f2

−τ1 + τ2 − τ3 + τ4

⎤
⎥⎥⎦ , (3)

where f1, f2, f3, f4 and τ1, τ2, τ3, τ4 are the thrust forces and 
torques generated by the four rotors, respectively. The element-
wise form of the model in (1) and (2) could be written in a 
matrix-vector form as ẋ = f(x, u), where f represents the right-
hand side of (1) and (2).

The key difference between VPP and conventional fixed pitch 
propeller quadcopters is the model of their thrust forces and 
torques. In particular, the force and torque generated by a VPP are, 
respectively,

f i = k1ω
2
i αi,

τi = k2ω
2
i + k3ω

2
i α

2
i + k4ωiαi,

(4)

where ωi is the spinning rate of propeller i, αi is the pitch angle of 
the propeller, and k1, k2, k3 and k4 are drag coefficients [23]. Fig. 2
illustrates the structure of a VPP.

For a CVPP quadcopter the spinning rates of the four propellers 
are identical. That is, it has ωi = ω0 for all i. To simplify (4), 
the drag coefficients are combined with the fixed spinning speed 
which gives b1 = k1ω

2
0 , b2 = k2ω

2
0 , b3 = k3ω

2
0 , and b4 = k4ω0, 

where (4) becomes

f i = b1αi,

τi = b2 + b3α
2
i + b4αi .

(5)

It can be seen that f i is linearly proportional to αi whereas τi
is a second-order polynomial of αi .
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Consider the scenario where the pitch angle of propeller 1 be-
comes stuck at a constant value c. Substituting α1 = c and (5) to 
(3) gives

u1 = b1(c + α2 + α3 + α4), (6)

u2 = b1(α3 − c), (7)

u3 = b1(α4 − α2), (8)

u4 = b3(−c2 + α2
2 − α2

3 + α2
4)+

b4(−c + α2 − α3 + α4). (9)

In this case, u1, u2, u3, u4 are not independent anymore since there 
are merely three degree of freedoms.

3. Equilibrium analysis

In this section, the equilibrium of the nonlinear faulty system 
is identified firstly, and then a quantitative study of the equilib-
rium points which reveals some interesting and unique properties 
of CVPP quadcopters is presented.

3.1. Equilibrium trajectory

To find an equilibrium point for the quadcopter dynamic equa-
tion, let the right parts of equations (1) and (2) equal 0. This gives 
u∗

1 = mg , u∗
2 = 0, u∗

3 = 0, and u∗
4 = 0. Moreover, according to the 

assumption that propeller 1 becomes stuck at a constant angle 
α1 = c, we can substitute these requirements and constrains into 
(6)-(9) which gives

mg = b1(c + α2 + α3 + α4),

0 = b1(α3 − c),

0 = b1(α4 − α2),

0 = b3(−c2 + α2
2 − α2

3 + α2
4)+

b4(−c + α2 − α3 + α4).

This is a system with 4 equations and 3 unknowns, which cannot 
be solved. Only 3 constraint equations can be satisfied in the sys-
tem, and one cannot. Compared with the loss of attitude, pitch and 
roll control which is likely to cause the quadcopter to crash, the 
loss of yaw control seems acceptable. Therefore, we have u∗

1 = mg , 
u∗

2 = 0, and u∗
3 = 0, substituting which into (6)-(8) gives

α∗
2 = α∗

4 = mg

2b1
− c, α∗

3 = c. (10)

Furthermore, substituting (10) into (9) yields

u∗
4 = 2b3

(
α2

4 − c2
)

+ 2b4 (α4 − c) . (11)

Moreover, substituting ṙ∗ = 0 to (2) gives

r∗ = sgn(u∗
4)

√
|u∗

4|l
kγ

, (12)

where sgn(·) denotes the sign function. When α∗
2 = α∗

4 �= c, (11)
gives u∗

4 �= 0 and r∗ �= 0 which indicates that the CVPP quadcopter 
would not be able to remain at any static equilibrium point but 
can follow a state trajectory with constant self-spinning speed.

In particular, consider a state trajectory

x∗(t) = [
x∗, y∗, z∗, φ∗, θ∗,ψ∗(t), p∗,q∗, r∗, u∗, v∗, w∗]T

= [
x∗, y∗, z∗,0,0,ψ∗(t),0,0, r∗,0,0,0

]T
,

3

Table 1
CVPP quadcopter parameters.

Parameters Name Value Unit

Mass m 1 kg
Gravitational acceleration g 10 m/s2

Inertia about xb , yb Ix ,I y 0.125 kg · m2

Inertia about zb Iz 0.25 kg · m2

Arm length l 1 m
Force coefficient k1 2.86 · 10−5 -
Torque coefficient k2 1 · 10−8 -

k3 6.56 · 10−7 -
k4 2.29 · 10−5 -

Pitch angle limit αsat 0.3142 rad
Pitch angle rate limit dα 11.62 rad/s
Motor speed limit ωmax 1047.19 rad/s
Motor speed rate limit dω 6047 rad/s2

Linear resistance coefficient kβ 0.01 N · s/m
Rotation resistance coefficient kγ 0.05 N · s · m

where x∗, y∗, z∗, r∗ are constant values and ψ∗(t) = r∗t + ψ∗
0 . The 

state trajectory x∗(t) corresponds to the case where the yaw angle 
ψ∗(t) varies at a constant value r∗ while all the other states are 
constant.

Along x∗(t), we have u̇∗, ̇v∗, ẇ∗, ṗ∗ , and q̇∗ equal to 0.
In terms of control inputs, since there are only three functional 

servos, we choose the three pitch angles as the new inputs. Along 
the equilibrium trajectory, we have

u∗
F = [

α∗
2,α∗

3,α∗
4

]T

=
[

mg

2b1
− c, c,

mg

2b1
− c

]T

,

where the subscript F represents ‘fault’.

3.2. Quantitative study of the equilibrium

Along the equilibrium trajectory, the quadcopter would rotate 
at a constant rate of r∗ as given in (12). It is of great interest to 
see the specific values of r∗ , especially whether r∗ could be zero.

Substituting b1 = k1ω
2
0 , b3 = k3ω

2
0 , and b4 = k4ω0 into (11)

gives

u∗
4 = k3m2 g2

2k2
1ω

2
0

+ k4mg

k1ω0
−

(
2mgk3

k1
+ 4k4ω0

)
c, (13)

substituting which into (12) yields

r∗ =
√√√√[

k3m2 g2

2k2
1ω

2
0

+ k4mg

k1ω0
−

(
2mgk3

k1
+ 4k4ω0

)
c

]
l

kγ
. (14)

The parameters could be selected according to [23], as shown in 
Table 1.

Although it is assumed that ω0 is fixed in each control process, 
we would like to analyse the impact of different values of ω0 on 
r∗ . First, suppose that the physically achievable interval of ω0 is 
[0, ωmax]. Second, since ω0 must satisfy (10), it follows that

ω0 =
√

mg

2k1(α
∗
2 + c)

. (15)

Suppose the physically achievable pitch angle is saturated by 
[−αsat, αsat], where αsat = 0.314 rad following [9]. Since α∗

2 > −c
by (10), we know α2 ∈ (−c, αsat]. It then follows from (15) that 
ω0 ∈ 
2 =

[√
mg

2k (α +c) ,+∞
)

. Thus, ω0 must satisfy

1 sat
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Fig. 3. The relationship between a VPP quadcopter’s self rotation speed r∗ and its 
centrally-controlled propeller spinning speed w0, as expressed by (14). Shown for 
different angles c (in degree) at which faulty propeller 1 became stuck. The inter-
val of ω0 for each curve is given in (16). (For interpretation of the colours in the 
figure(s), the reader is referred to the web version of this article.)

ω0 ∈ 
1 ∩ 
2 =
[√

mg

2k1(αsat + c)
,ωmax

]
:= [ωmin,ωmax]. (16)

To determine the admissible interval of c, it is notable that (16)
implies

0 ≤ mg

2k1(αsat + c)
≤ ω2

max,

which gives c ≥ mg
2k1ω

2
max

− αsat. Furthermore, since c ∈ [−αsat, αsat], 
it follows that

cmin := mg

2k1ω2
max

− αsat ≤ c ≤ αsat. (17)

The interpretation is that, if the faulty propeller became stuck at 
the angle c < cmin, then (15) could not hold and hence the system 
could not reach the equilibrium point.

When c varies in [cmin, αsat], the values of r∗ against w0 are 
shown in Fig. 3. This figure suggests two important properties. 
First, the values of r∗ for different c are within a small interval: 
[−0.13, 0.13] rad/s. As a result, the quadcopter self-rotates slowly 
at the equilibrium. Second, surprisingly, w0 can be tuned to make 
r∗ = 0 for certain c (see blue dotted curves in Fig. 3). In this case, a 
CVPP quadcopter could hover steadily without self-rotation in the 
presence of a propeller fault.

To examine the case of r∗ = 0 more closely, substituting r∗ = 0
into (14) gives

k3m2 g2

2k2
1ω

2
0

+ k4mg

k1ω0
=

(
2mgk3

k1
+ 4k4ω0

)
c, (18)

which implies

c = mg

4k1ω
2
0

(19)

or equivalently

ω∗
0 =

√
mg

4k1c
. (20)

Therefore, given a specific value of ω0, if angle c at which pro-
peller 1 became stuck satisfies (19), then it gives r∗ = 0. On the 
other hand, given a specific value of c, if ω0 satisfies (20), then it 
gives r∗ = 0.
4

Since c ∈ [cmin, αsat] and ω0 ∈ [ωmin, ωmax], examining under 
what conditions (19) holds is needed. Since ω0 ∈ [ωmin, ωmax], it 
follows from (19) that

c = mg

4k1ω
2
0

≤ mg

4k1ω
2
min

= αsat, (21)

c = mg

4k1ω
2
0

≥ mg

4k1ω2
max

:= c† ≈ 0.05. (22)

Inequality (21) always holds because c ≤ αsat. Then, it follows from 
(22) that if

c ≥ c†,

then r∗ could be zero by setting ω0 as in (20). This result is illus-
trated by Fig. 3, when c ≥ c† (blue dotted curves), there exists ω0
that could achieve r∗ = 0.

4. Identification of uncontrollable modes

In this section, the controllable and uncontrollable modes are 
identified by conducting a controllability decomposition of the lin-
earised system, and then a simple linear controller is presented for 
the quadcopter to track desired trajectories.

4.1. Linearized model

Define x̄ = x − x∗ and ūF = uF − u∗
F . Since ẋ∗ = f(x∗, u∗), it 

follows that

˙̄x = ẋ − ẋ∗ = f(x̄ + x∗, ūF + u∗
F ) − ẋ∗

≈ f(x∗,u∗
F ) + A(ψ∗)x̄ + BūF − ẋ∗

= A(ψ∗)x̄ + BūF (23)

where

A(ψ∗) = ∂F(x̄, ūF )

∂x

∣∣∣∣
x=x∗,uF =u∗

F

=

⎡
⎢⎢⎣

03×3 03×3 03×3 I3×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 03×3
03×3 E3×3 03×3 03×3

⎤
⎥⎥⎦ ∈R12×12,

with I3×3 as the identity matrix and

E3×3 =
⎡
⎣ g sinψ∗(t) g cosψ∗(t) 0

−g cosψ∗(t) g sinψ∗(t) 0
0 0 0

⎤
⎦ ,

and

B = ∂F(x̄, ūF )

∂uF

∣∣∣∣
x=x∗,uF =u∗

F

=[03×3,03×3,QT
c1,QT

c2]T ∈R12×3

where

Qc1 =
⎡
⎢⎣

0 b1l
Ix

0

− b1l
I y

0 b1l
I y

n2l
Iz

−n3l
Iz

n4l
Iz

⎤
⎥⎦ ,Qc2 =

⎡
⎣ 0 0 0

0 0 0
b1
m

b1
m

b1
m

⎤
⎦ ,

and ni = 2α∗b3 + b4.
i
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4.2. Controllability analysis

The controllability matrix Qc of system (23) is

Qc =
[

B AB A2B . . . A11B
]

=

⎡
⎢⎢⎣

03×3 Qc2 03×3 Qc3
03×3 Qc1 03×3 03×3 012×24
Qc1 03×3 03×3 03×3
Qc2 03×3 Qc3 03×3

⎤
⎥⎥⎦ ∈R12×36,

where

Qc3 =
⎡
⎢⎣

− Pc
I y

Ps
Ix

Pc
I y

− Ps
I y

− Pc
Ix

Ps
I y

0 0 0

⎤
⎥⎦ ,

Pc = b1lg cosψ∗(t), P s = b1lg sinψ∗(t).

Matrix Qc is sparse and highly structured. It can be verified that 
rank(Qc) = 10 when the rated speed ω0 > 0. Since there are 12
states, we know that two modes are uncontrollable.

To further identify the uncontrollable modes, we conduct a con-
trollability decomposition as follows. Following [24,25], we design

T =

⎡
⎢⎢⎣

03×3 Qc2 03×2 Qc4 03×2
03×3 Qc1 03×2 03×2 Qc5
Qc1 03×3 03×2 03×2 Qc6
Qc2 03×3 Qc4 03×2 03×2

⎤
⎥⎥⎦ ,

Qc4 =
⎡
⎢⎣

− Pc
I y

Ps
Ix

− Ps
I y

− Pc
Ix

0 0

⎤
⎥⎦ ,

Qc5 =
⎡
⎣ 0 0

0 0
0 1

⎤
⎦ ,Qc6 =

⎡
⎣ 0 0

0 0
1 0

⎤
⎦ ,

where T ∈R12×12 is invertible. Then we define

x̃ = T−1x̄. (24)

Substituting (24) into (23) leads to ˙̃x = T−1ATx̃ + T−1BūF . Let Ã =
T−1AT and B̃ = T−1B. Then, it follows that ˙̃x = Ãx̃ + B̃ūF , whose 
sub-block matrix form is[ ˙̃xc˙̃xc̄

]
=

[
Ãc Ã12

02×10 Ãc̄

][
x̃c
x̃c̄

]
+

[
B̃c

02×3

]
ūF , (25)

where

Ãc =

⎡
⎢⎢⎣

03×3 03×3 03×2 03×2
I3×3 03×3 03×2 03×2
02×3 H2×3 02×2 02×2
02×3 02×3 I2×2 02×2

⎤
⎥⎥⎦ ,

H2×3 =
[

1 0 −1
0 1 0

]
, Ã12 = 010×2,

Ãc̄ =
[

0 0
1 0

]
, B̃c =

⎡
⎢⎢⎣

I3×3
03×3
02×3
02×3

⎤
⎥⎥⎦ .

Equation (25) shows that the system is decomposed into an un-
controllable subsystem ˙̃xc̄ = Ãc̄x̃c̄ and a controllable subsystem 
˙̃xc = Ãcx̃c + Ã12x̃c̄ + B̃cūF . The transformed states are
5

Fig. 4. Block diagram of the CVPP quadcopter control scheme.

[
x̃c
x̃c̄

]
= T−1x̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx12
2b1

− Ixx7
2lb1

− I y x8
2lb1

Ixx7
lb1

mx12
2b1

− Ixx7
2lb1

+ I y x8
2lb1

mx3
2b1

− Ixx4
2lb1

− I y x5
2lb1

Ixx4
lb1

mx3
2b1

− Ixx4
2lb1

+ I y x5
2lb1

− I y(x10 cos ψ∗+x11 sinψ∗)
lb1 g

− Ix(x11 cosψ∗−x10 sinψ∗)
lb1 g

− I y(x1 cosψ∗+x2 sinψ∗)
lb1 g

− Ix(x2 cos ψ∗−x1 sin ψ∗)
lb1 g

x9 + x12kc̄1 − x8kc̄2 + x7kc̄3

x6 + x3kc̄1 − x5kc̄2 + x4kc̄3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

kc̄1 = ml(n2 − n4)

2Izb1
, kc̄2 = I y(n2 + n4)

2Izb1
,

kc̄3 = Ix(2n3 − n2 + n4)

2Izb1
,

where xi (i ranges from 1 to 12) are the elements of x̄, and x̃c and 
x̃c̄ are controllable and uncontrollable modes, respectively.

As can be seen from (26), the uncontrollable states in x̃c̄ , which 
correspond to the last two elements of the vector, contain x9 and 
x6 that correspond to r and ψ , respectively. As a result, the yaw 
angle and its angular rate are uncontrollable.

4.3. A linear controller

Fig. 4 shows a block diagram of the control scheme for a faulty 
CVPP quadcopter. Based on the decomposed controllable system 
(25), a linear state feedback controller can be designed. Consider a 
simple feedback design H∞ controller is presented to enhance the 
robustness of the system. Other control methods like LQG could 
also be used. According to the faulty system (25), the H∞ con-
troller is designed as

˙̃x = Ãx̃ + B̃1w + B̃2u,

z∞ = C̃1x̃ + D12u,

ỹ = C̃2x̃,

(27)

where

Ã =

⎡
⎢⎢⎣

03×3 03×3 03×2 03×2
I3×3 03×3 03×2 03×2
02×3 H2×3 02×2 02×2
02×3 02×3 I2×2 02×2

⎤
⎥⎥⎦ ,

B̃1 =

⎡
⎢⎢⎣

I3×3
03×3
02×3
0

⎤
⎥⎥⎦ , B̃2 =

⎡
⎢⎢⎣

I3×3
03×3
02×3
0

⎤
⎥⎥⎦ ,
2×3 2×3
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Fig. 5. Trajectory tracking results. The blue dotted curves represent the actual flying 
trajectory and the red line is the reference square trajectory with 10 m length on 
each side. The faulty propeller is highlighted in red.

C̃2 =

⎡
⎢⎢⎣

03×3 Qc2 03×2 Qc4
02×3 S 02×2 02×2

S 02×3 02×2 02×2
Qc2 03×3 Qc4 03×2

⎤
⎥⎥⎦ ,

C̃1 =
[

I10×10
03×10

]
, D12 =

[
010×3
I3×3

]
,

S =
[

0 b1l
Ix

0

− b1l
I y

0 b1l
I y

]
.

It can be found in (27) that, x̃ is the decomposed state, w is the 
disturbance, u represents the control signal, and z∞ is the error 
value that needs to be minimized.

5. Simulation validation

This section presents two simulation experiments to verify the 
theoretical findings. The simulation is conducted in a physical envi-
ronment built in Simscape in Matlab. It combines detailed physical 
component models based on first principles. The parameter val-
ues are shown in Table 1. A low pass filter with a 10 Hz cut-off 
frequency is used to represent the dynamics of the propeller ac-
tuator. The input of the low pass filter is the expected value of 
the pitch angle and the output is the response value. Noise with 
20 dB signal-to-noise ratio is added to all states as measurement 
noise.

In the first experiment, it is assumed that the propeller 1 has 
malfunctioned from the beginning with a fixed pitch angle of 
0.18 rad and a spinning speed of 707.7 rad/s. Moreover, we assume 
that these values can be measured and used by the controller. The 
quadcopter is required to track a trajectory simulating taking off, 
moving along a square trajectory with 10 m length on each side, 
and landing, shown in Fig. 5.

The results are shown in Fig. 6. As can be seen, although the 
yaw angle and its rate are uncontrollable, a CVPP quadcopter with 
a faulty actuator is still able to accurately track the desired posi-
tion trajectory and the value of r remains close to zero, which is 
consistent with our analysis.

In the second experiment, the performance of the proposed 
controller given a variety of initial conditions is examined. The 
initial state is [x0, y0, z0, φ0, θ0] = [0, 0, 0, φr, θr] and the target 
state is [x∗, y∗, z∗, φ∗, θ∗] = [0, 0, 0, 0, 0], where the values of φr

and θr are generated randomly from a uniform distribution in [-
1.57,1.57] rad. Assume the quadcopter VPP 1 stuck at 0.05 rad and 
a spinning speed of 996.9 rad/s. When the state gets sufficiently 
close to the target state after 5 s, the quadcopter is regarded as 
stable; otherwise it is unstable.
6

Fig. 6. Simulation results of a CVPP quadcopter subject to propeller faults. The 
trajectory is shown in black dot lines. The yaw angle ψ and angular rate r are 
uncontrollable but approach the theoretical prediction.

We conducted 100 trails, each with a different initial condition 
(φr and θr ). Fig. 7 shows that the controller works well under a 
wide range of initial conditions, with a success rate of 95 percent. 
It is shown that the quadcopter does not cope well when both 
pitch (θ ) and roll (φ) are large negative angles. Fig. 8 shows the 
results of a typical simulation trail, demonstrating the control law 
to work well.

6. Conclusion

In this paper, the dynamics and control of CVPP quadcopters 
in the presence of a faulty propeller is studied, that is, a pro-
peller that can no longer adjust its pitch angle. The equilibrium 
trajectory was analysed from the beginning in this paper, the un-
controllable modes were identified next, and a linear controller 
was proposed at last. The correlation between the self-rotation 
speed and the common propeller spinning rate was characterized. 
The specific condition under which a faulty CVPP quadcopter could 
hover steadily without self-rotation was given. We believe the new 
findings could further enhance the development for CVPP quad-
copters for high-performance flights in the future. The findings 
were further validated by physics-based simulation experiments.
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Fig. 7. Results from physics-based simulations for 100 random initial states. The x-
axis and y-axis show the initial pitch (θ0) and roll (φ0) angles respectively. A black 
circle indicates that the faulty quadcopter achieved stability, whereas the red cross 
indicates that it lost stability.

In this work, fault detection or isolation was not considered, 
which is, however, important for future research. The properties of 
CVPP quadcopters in the presence of two or three faulty propellers 
and other types of faults will be explored.
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