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a b s t r a c t

This paper proposes a novel consensus-based distributed unscented Kalman filtering algorithm with
event-triggered communication mechanisms. With such an algorithm, each sensor node transmits the
newest measurement to the corresponding remote estimator selectively on the basis of its own event-
triggering condition. Compared to the existing approaches, the proposed algorithm can significantly
reduce unnecessary data transmissions and hence save communication energy consumption and
alleviate the communication burden. A sufficient condition is provided to guarantee the stochastic
stability of the distributed nonlinear filtering scheme. The proposed algorithm is applicable to a
wide range of distributed estimation tasks, e.g., tracking a moving target with multiple unmanned
aerial vehicles (UAVs). Simulation results demonstrate the feasibility and effectiveness of the proposed
filtering algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The past decades have witnessed ever-increasing research
attention devoted to the sensor networks due to its extensive ap-
plications in many fields such as battlefield detection,
environment monitoring, information processing, autonomous
navigation, target tracking and localization. One of the most
important problems in sensor networks is designing the func-
tional filtering algorithms to estimate the state of the target
process (Olfati-Saber, 2009). Compared with the centralized set-
ting, distributed state estimation without requiring information
center has several advantages including stronger fault-tolerance,
less computational and communication loads. The central issue
in distributed state estimation is to cooperatively estimate the
states of a dynamic system via a wireless sensor network with
given communication topology. Specifically, each node in such
a distributed framework only needs to share information with
its neighbors over networks. As a popular approach to address
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distributed state estimation problem, consensus-based method-
ologies have made significant progress in recent years (Battistelli
& Chisci, 2014, 2016; Battistelli, Chisci, Mugnai, & Farina, 2014; Ji,
Lewis, Hou, & Mikulski, 2017; Kamal, Farrell, & Roy-Chowdhury,
2013; Li, Jia, & Du, 2016; Matei & Baras, 2012; Olfati-Saber,
2007, 2009; Shen, Wang, & Hung, 2010). In Olfati-Saber (2007,
2009), Kalman consensus filters (KCF) are proposed to achieve a
consensus in terms of the local state estimates by way of adding a
consensus term, which is also applicable to the case with packet
dropout. In Matei and Baras (2012), a Luenberger-like consensus
algorithm is developed, where every sensor combines its own
local estimate computed by the Luenberger observer and the
other estimates obtained from its neighboring nodes in a convex
manner. In addition, for the uncertain systems, H∞-consensus
performance constraint is introduced in Shen et al. (2010) to
quantify the consensus level with regard to the estimation errors.

However, when there exist some non-ideal conditions, such
as noisy transmission channel, restricted communication network
or limited observability (Ji et al., 2017), the state estimation may
be a more troublesome and challenging problem. To overcome
these difficulties, an information-weighted consensus filter (ICF)
algorithm is discussed in Ji et al. (2017), Kamal et al. (2013).
In Battistelli et al. (2014), the stability of the hybrid CMCI (con-
sensus on measurement (Olfati-Saber, 2007) and consensus on
information (Battistelli & Chisci, 2014)) filtering algorithm based
on the collective observability and network connectivity con-
dition is guaranteed in a linear setting, which is equivalent to
ICF with particular weights. When it comes to the nonlinear
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systems, an alternative extended Kalman filter (EKF) argument
is raised in Battistelli and Chisci (2016), Battistelli et al. (2014),
Hu, Wang, Gao, and Stergioulas (2012), Li et al. (2016). Similar
to Battistelli et al. (2014), the local stability analysis of dis-
tributed extended Kalman filter (DEKF) under certain conditions
is provided in Battistelli and Chisci (2016). In Li et al. (2016), a
variance-constrained DEKF is put forward without omitting the
edge-covariances in Olfati-Saber (2009), and the filter gain is
obtained by minimizing an upper bound for the estimation error
covariance. However, the EKF-based algorithm suffers a number
of limitations especially when the system contains high nonlin-
earities and even discontinuities, which facilitates the develop-
ment of unscented Kalman filter (UKF)-based algorithm (Julier &
Uhlmann, 2004; Li, Wei, & Han, 2015; Li, Wei, Han, & Liu, 2016;
Li & Xia, 2012; Xiong, Zhang, & Chan, 2006). In Li et al. (2015), a
distributed UKF algorithm based on CI method is proposed, and
lately, the weighted average consensus-based UKF is developed
with theoretical proof in Li et al. (2016).

In many practical applications of sensor networks, the sen-
sors are battery-powered, which brings about an inevitable issue
that replacing or recharging the worn batteries might be im-
possible in a complicated environment. Thus, it is of particular
importance to decrease the frequency of sensor-to-estimator data
transmission without compromising the expected estimation per-
formance (Miskowicz, 2006; Wu, Jia, Johansson, & Shi, 2013).
A large number of related works considering event-triggered
communication mechanism have been reported in Dimarogonas,
Frazzoli, and Johansson (2012), Li, Jia, and Du (2016), Li, Yu, Xia,
and Yang (2017), Liu, Wang, He, and Zhou (2015), Shi, Chen, and
Shi (2014), Trimpe (2014), Zhang and Jia (2017), Zhang, Kuai, Ren,
Luo, and Lin (2016), Zheng and Fang (2016). Based on the KCF
framework in Olfati-Saber (2009), a kind of event-triggered KCF is
derived with a named send-on-delta (SoD) schedule (Miskowicz,
2006) on estimator-to-estimator channel to reduce communica-
tion energy consumption in Li et al. (2016). An extended work can
be found in Zhang and Jia (2017), where the sensor-to-estimator
channel is also taken into consideration. However, to the best of
our knowledge, there have been very few results about event-
triggered UKF algorithm except Li et al. (2017) with only one
single sensor considered, even none in distributed setting.

In addition to the theoretical developments, the work pre-
sented here is applied in the moving target tracking problem for a
team of UAVs equipped with onboard sensors. Mobile UAV sens-
ing platforms have attracted increasing attention in recent years
due to the distinctive advantages over their static counterparts
with regard to the area coverage, estimation performance and
robustness against failure (Campbell & Whitacre, 2007; Hausman,
Mueller, & Hariharan, 2015; Morbidi & Mariottini, 2013). In Zhan,
Casbeer, and Swindlehurst (2010), a centralized adaptive target-
tracking algorithm based on the UAV sensors is developed in
the EKF framework, which is further investigated in the case
where a maneuvering target is tracked with distributed UKF (Li
& Jia, 2012) and distributed high degree cubature information
filter (Sun & Xin, 2015) in the multiple model environment,
respectively. However, the power constraints on small UAVs will
limit the practicality of the existing algorithms, in which the
data transmissions between individuals and ground stations or
among individuals are executed in a periodical fashion. There-
fore, the proposed event-triggered cooperative algorithm will be
utilized in this application to reach a balance between tracking
performance and energy consumption.

The main contributions of this paper are threefold:

(1) an event-triggered cooperative UKF algorithm is derived,
which can well balance the filtering performance and av-
erage communication rate by designing reasonable trigger
thresholds.

(2) the stochastic stability of the proposed algorithm in terms
of the bounded estimation errors is investigated based on
the stochastic stability theory.

(3) the proposed algorithm is employed in the moving tar-
get localization problem with multiple UAVs to show the
practical potentials.

The remainder of this paper is organized as follows. Section 2
provides some basic concepts in algebraic graph theory and the
mathematical formulation of the considered problem. Section 3
derives the event-triggered cooperative unscented Kalman filter-
ing algorithm, whose stochastic stability will be analyzed in Sec-
tion 4. Section 5 presents the simulation results illustrating the
performance of proposed algorithm for the ground moving tar-
get localization with multiple UAVs tracking system. Concluding
remarks are stated in Section 6.

2. Preliminaries and problem formulation

First of all, we present some notations that will be used
throughout this paper. Let Rn and Rn×m be a real n-dimensional
Euclidean vector space and a real n × m matrix space, respec-
tively. Let λmax(·) and λmin(·) be the largest and the smallest
eigenvalues of a real matrix. E{·} is the expectation operation.
∥·∥ represents the Euclidean norm in Rn. For a matrix A, AT

and A−1 denote its transpose and inverse, respectively. tr{A}

denotes the trace of A and A > 0 means A is a positive definite
matrix. diag(A1, A2, . . . , An) refers to the diagonal matrix where
A1, A2, . . . , An are the main diagonal matrix blocks. col(·) denote
the operation to aggregate all the column vectors into a single
column vector. 1N denotes the all-1 vector with dimension N . In
is the n×n identity matrix. The subscript n will be dropped if the
dimension is clear from the context.

2.1. Communication graph

The communication topology of the sensor network can be
represented by an undirected graph G = (V, E) with a finite ver-
tex set V = {1, 2, . . . ,N}, corresponding to the N sensor nodes,
and an edge set E ⊆ V × V , corresponding to the communication
channels between sensor nodes. If there exists an edge (j, i) ∈ E ,
then node i and node j are said to be adjacent and node i can
receive information from node j. For an undirected graph, (j, i) ∈

E if and only if (i, j) ∈ E . The set of neighbors of node i is denoted
as Ni = {j ∈ V|(j, i) ∈ E}, which contains the nodes that node i
can communicate with.

2.2. Problem formulation

Consider a nonlinear discrete-time system described by

xk = f (xk−1) + ωk−1 (1)
z ik = hi(xk) + ν i

k, i = 1, 2, . . . ,N, (2)

where xk ∈ Rn is the state vector at discrete-time instant k, and
z ik ∈ Rm is the measurement vector of the ith sensor. f : Rn

→ Rn

and hi
: Rn

→ Rm denote the nonlinear process function and
the ith measurement equation, respectively. The process noise
ωk−1 ∈ Rn and the ith measurement noise ν i

k ∈ Rm are assumed
to be mutually uncorrelated zero-mean Gaussian white noise
sequences with the respective covariance matrices Qk−1 ∈ Rn×n

and Ri
k ∈ Rm×m. Assume that the target plant is detected by N

battery-powered sensors, which transmit data to the correspond-
ing remote state estimators through wireless channels. In order
to reduce communication costs and expand sensors’ service life,
each sensor i is equipped with an event-triggered scheduler that
decides whether to allow a measurement data transmission. The



266 W. Song, J. Wang, S. Zhao et al. / Automatica 105 (2019) 264–273

widely used SoD strategy (Miskowicz, 2006) is employed herein.
Specifically, at each time instant k, sensor i outputs a new local
measurement update z ik, and the scheduler of node i determines
whether to send the updated value to its estimator according to
the following event-triggered condition:

γ i
k =

{
1, if (z ik − z i

τ ik−1
)T (z ik − z i

τ ik−1
) > δi,

0, otherwise.
(3)

where τ i
k−1 is the last measurement transmitted time instant of

sensor i, and δi > 0 is the predetermined trigger threshold. The
update rule of τ i

k is described as

τ i
k =

{
k, if γ i

k = 1,
τ i
k−1, if γ i

k = 0,
(4)

namely,

z i
τ ik

= γ i
kz

i
k + (1 − γ i

k)z
i
τ ik−1

. (5)

3. Event-triggered cooperative unscented Kalman filtering al-
gorithm

In this section, the event-triggered cooperative unscented
Kalman filtering algorithm will be derived. Similar to Li et al.
(2017), for each estimator node i ∈ V , the state estimate update
equation is defined by

x̂ik+1 = x̂ik+1|k + γ i
k+1K

i
k+1(z

i
k+1 − ẑ ik+1|k)

+ (1 − γ i
k+1)M

i
k+1(z

i
τ ik

− ẑ ik+1|k). (6)

For the convenience of further analysis, the prediction error and
estimation error for node i at time instant k + 1 are respectively
defined as follows

x̃ik+1|k = xk+1 − x̂ik+1|k, (7)

x̃ik+1 = xk+1 − x̂ik+1, (8)

where x̂ik+1|k denotes the a priori estimate of node i at time k+ 1,
and x̂ik+1 denotes the a posteriori estimate of node i at time k+ 1.
The matrices K i

k+1 ∈ Rn×m and M i
k+1 ∈ Rn×m are the estimator

gains to be determined next.
In fact, the estimate update equation (6) downgrades to the

standard update form of UKF (Julier & Uhlmann, 2004) if γ i
k+1 =

1. In this case, the estimator gain matrix K i
k+1 is defined as

K i
k+1 = P i

xk+1zk+1
(P i

zk+1zk+1
)−1 (9)

and the estimation error covariance P i
k+1 is updated by

P i
k+1 = P i

k+1|k − K i
k+1P

i
zk+1zk+1

(K i
k+1)

T (10)

where P i
k+1|k, P

i
zk+1zk+1

and P i
xk+1zk+1

denote the predicted covari-
ance, predicted measurement covariance, and state-measurement
cross-covariance. To derive the gain matrix M i

k+1 and the update
rule of the estimation error covariance when γ i

k+1 = 0, a lemma
is required beforehand.

Lemma 1 (Hu et al., 2012). For any given x, y ∈ Rn, and scalar
σ > 0, one has

xyT + yxT ≤ σxxT + σ−1yyT . (11)

Considering the case where γ i
k+1 = 0, the estimate update

equation (6) can be rewritten by the following:

x̂ik+1 = x̂ik+1|k + M i
k+1(z

i
τ ik

− z ik+1) + M i
k+1(z

i
k+1 − ẑ ik+1|k). (12)

Substituting (12) into (8) and using (7) yields

x̃ik+1 = x̃ik+1|k − M i
k+1(z

i
τ ik

− z ik+1) − M i
k+1(z

i
k+1 − ẑ ik+1|k). (13)

Assume that the functions hi(·) are continuously differentiable at
x̂ik+1|k, using the Taylor expansion, we obtain

hi(xk+1) = hi(x̂ik+1|k) + H i
k+1x̃

i
k+1|k + φi(xk+1, x̂ik+1|k), (14)

where H i
k+1 =

∂hi(xk+1)
∂xk+1

⏐⏐
xk+1=x̂ik+1|k

. Following the derivation of EKF
in Battistelli and Chisci (2016), Kluge, Reif, and Brokate (2010),
the event-triggered single UKF in Li et al. (2017) and the un-
scented information filtering in Lee (2008), the linearization tech-
nique is utilized herein, i.e., only the first-order term in (14) is
reserved in the subsequent analysis. Then noticing that ẑ ik+1|k =

hi(x̂ik+1|k) in (13) yields

x̃ik+1 = Ai
k+1x̃

i
k+1|k − M i

k+1ρ
i
k+1 − M i

k+1ν
i
k+1, (15)

where Ai
k+1 = I − M i

k+1H
i
k+1 and ρ i

k+1 = z i
τ ik

− z ik+1.

Next, the estimation error covariance P i
k+1 is calculated by

P i
k+1

= E{x̃ik+1(x̃
i
k+1)

T
}

= Ai
k+1P

i
k+1|k(A

i
k+1)

T
− Mi

k+1 − (Mi
k+1)

T
− N i

k+1

− (N i
k+1)

T
+ M i

k+1E{ρ i
k+1(ρ

i
k+1)

T
}(M i

k+1)
T

+M i
k+1E{ν i

k+1(ν
i
k+1)

T
}(M i

k+1)
T

+ Oi
k+1 + (Oi

k+1)
T , (16)

where Mi
k+1 = Ai

k+1E{x̃ik+1|k(ρ
i
k+1)

T
}(M i

k+1)
T ,N i

k+1
= Ai

k+1E{x̃ik+1|k(ν
i
k+1)

T
}(M i

k+1)
Tand Oi

k+1 = M i
k+1

× E{ρ i
k+1(ν

i
k+1)

T
}(M i

k+1)
T .

It can be verified that the term N i
k+1 is equal to zero since neither

x̃ik+1|k, M
i
k+1 nor H i

k+1 depend on ν i
k+1. Note that the additional

terms, involving ρ i
k+1, are induced by the event-triggered trans-

mission mechanism, which will make it difficult to design the
filter gain M i

k+1.
By applying Lemma 1 to the terms (−Mi

k+1 − (Mi
k+1)

T ) and
(−Oi

k+1− (Oi
k+1)

T ) respectively and using (3) as in Li et al. (2017),
the following inequality holds

P i
k+1 ≤ η1Ai

k+1P
i
k+1|k(A

i
k+1)

T
+ η2M i

k+1R
i
k+1(M

i
k+1)

T

+ η3M i
k+1δ

i(M i
k+1)

T . (17)

where η1 = 1+ σ1, η2 = 1+ σ2, η3 = 1 + σ−1
1 + σ−1

2 , and σ1, σ2
are positive scalars. Define the terms of the right-hand side of (17)
as P̄ i

k+1, namely, an upper bound for the filtering error covariance
P i
k+1. According to (10) and (17), the unified form of upper bound

for the covariance, denoted by Ξ i
k+1, is derived as

Ξ i
k+1 = P i

k+1|k − γ i
k+1K

i
k+1P

i
zk+1zk+1

(K i
k+1)

T

+ (1 − γ i
k+1)

[
η1Ai

k+1P
i
k+1|k(A

i
k+1)

T

+ η2M i
k+1R

i
k+1(M

i
k+1)

T
+ η3M i

k+1δ
i(M i

k+1)
T

− P i
k+1|k

]
. (18)

Furthermore, the optimal filter gain M i
k+1 of node i when γ i

k+1 =

0, in the sense that it minimizes the upper bound P̄ i
k+1, is derived

via the following equation,

∂tr(P̄ i
k+1)

∂M i
k+1

= η1[−2(P i
k+1|k)

T (H i
k+1)

T
] + η1[2M i

k+1H
i
k+1P

i
k+1|k

× (H i
k+1)

T
] + η2(2M i

k+1R
i
k+1) + η3(2M i

k+1δ
i)

= 0. (19)
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Accordingly, the filter gain M i
k+1 of node i can be written as

M i
k+1 = η1P i

k+1|k(H
i
k+1)

T [η1H i
k+1P

i
k+1|k(H

i
k+1)

T

+η2Ri
k+1 + η3δ

iI
]−1

. (20)

Remark 2. It is worth mentioning that the matrices P i
k+1 calcu-

lated by (16) are actually approximate error covariance matrices,
which are not equal to the accurate covariance matrices in linear
case due to the existence of linearization errors. Similar to Kluge
et al. (2010), we denote them as error covariance matrices in this
paper just for the sake of convenience. In addition, the upper
bounds for the approximate error covariance matrices computed
by (18) primarily serve as the cost functions to derive the filter
gain matrices M i

k+1 when γ i
k+1 = 0.

Remark 3. It is clear that M i
k+1(M

i
k+1)

T
≥ 0, thus the upper

bound defined in (18) will increase with the increase of the
triggering threshold δi. On the other hand, a larger threshold will
result in less data transmission, which means that the thresholds
δi do have a significant effect on the trade-off between estimation
performance and communication rate.

Subsequently, we will develop the event-triggered cooperative
UKF based on weighted average consensus algorithm such that
all the local estimators can reach a consensus in terms of state
estimates and upper bounds for the error covariances, denoted
by the information pairs (x̂ik+1, Ξ i

k+1), i ∈ V .

Definition 4 (Li et al., 2016). The information pairs (x̂ik+1, Ξ i
k+1),

i ∈ V are said to be of weighted average consensus, if the
following limit exists for all i ∈ V ,

(x̂∗

k+1, Ξ∗

k+1) = lim
l→∞

(x̂ik+1,l, Ξ i
k+1,l), (21)

where l is the consensus step index and (x̂ik+1,l, Ξ i
k+1,l), i ∈ V

denotes the information pair of node i available at time instant
k + 1 after lth iteration, satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩

x̂ik+1,l =

∑
j∈Ni

π i,jx̂jk+1,l−1

Ξ i
k+1,l =

∑
j∈Ni

π i,jΞ
j
k+1,l−1

(22)

with π i,j
≥ 0, being the weights and Σj∈Niπ

i,j
= 1. The initial

conditions are x̂ik+1,0 = x̂ik+1 and Ξ i
k+1,0 = Ξ i

k+1.

Based on the above definition, the next theorem provides a suffi-
cient condition for realizing a weighted average consensus with
regard to the information pairs.

Theorem 5. Consider the estimator network with communica-
tion topology G = (V, E). If the consensus weight matrix Π =

{π i,j
} ∈ Rn×n is chosen to be primitive, then each information pair

(x̂ik+1,l, Ξ i
k+1,l), i ∈ V can achieve a weighted average consensus.

Proof. The proof is similar to that of Theorem 1 in Li et al. (2016).
The key in proof is based on the property of row-stochastic and
primitive matrix Π (Ren, Beard, & Atkins, 2007), namely, there
exists a column vector η > 0 with all its elements summing up
to one, satisfying liml→∞Π l

= 1NηT . Here, Π l is the lth power of
matrix Π . Interested readers can refer to Li et al. (2016) for more
details.

Remark 6. It is worth pointing out that the connectivity of the
graph is closely relevant to the primitivity of consensus weight
matrix Π . For an undirected network, as stated in Calafiore and

Abrate (2009), a consensus matrix is primitive provided that the
graph is connected. On the other hand, for a directed network,
the primitivity of consensus matrix can be guaranteed when the
graph is strongly connected (Battistelli & Chisci, 2016).

Remark 7. The performance of consensus depends to a great
extent on the number of consensus steps L at each sampling
interval. As L increases, all elements of Π L will gradually approach
1
N . However, it is impossible to enlarge L without limits since
both the transmission and calculation loads will increase as L
increases. A proper L should be chosen to well balance the cost
and consensus level (Battistelli et al., 2014). In fact, a small L can
guarantee a desirable consensus performance if the undirected
communication network is fully connected, or else a larger L is
necessary (Li et al., 2016).

To conclude this section, the proposed event-triggered coopera-
tive UKF algorithm is summarized as Algorithm 1 given below.

Remark 8. Note that the proposed cooperative filtering algo-
rithm presents some significant differences when compared with
the algorithms in Li et al. (2017), Xiong et al. (2006), in which
only an independent sensor node is considered and the filtering is
solely performed. However, in the proposed algorithm, each node
can communicate with its neighboring peers and correct its own
state estimation using the information broadcasted by its neigh-
bors according to (22) with L iterations. Hence, the estimation
performance can be improved to an extent through cooperation
between nodes (see also Fig. 8 in Section 5).

4. Stability analysis of the proposed algorithm

In this section, the stochastic boundedness of filtering errors
in mean square for the event-triggered cooperative UKF algorithm
proposed in this paper will be analyzed.

Consider the discrete-time nonlinear system (1) and (2). For
the convenience of analysis, the approach utilized in Xiong et al.
(2006) and Li et al. (2017) is employed herein to simplify the error
expressions, namely,

x̃ik+1|k = αi
kF

i
kx̃

i
k + ωk (23)

z̃ ik+1 = β i
k+1H

i
k+1x̃

i
k+1|k + ν i

k+1, (24)

where z̃ ik+1 = z ik+1 − ẑ ik+1|k is the predicted measurement error.

F i
k =

∂ f (xk)
∂xk

⏐⏐
xk=x̂ik

and H i
k+1 =

∂hi(xk+1)
∂xk+1

⏐⏐
xk+1=x̂ik+1|k

are Jacobian matri-

ces. The unknown diagonal matrices αi
k =diag(αi

k,1, α
i
k,2, . . . , α

i
k,n)

and β i
k = diag(β i

k,1, β
i
k,2, . . . , β

i
k,m) are introduced to compensate

the linearization errors.
With (23) and (24) in hand, the predicted error covariance,

predicted measurement covariance and state-measurement cross-
covariance can be rearranged as

P i
k+1|k = αi

kF
i
kΞ

i
k(α

i
kF

i
k)

T
+ Qk (25)

P i
zk+1zk+1

= β i
k+1H

i
k+1P

i
k+1|k(H

i
k+1)

Tβ i
k+1 + Ri

k+1 (26)

P i
xk+1zk+1

= P i
k+1|k(H

i
k+1)

Tβ i
k+1. (27)

In order to prove the stochastic boundedness of estimation error
in mean square, it is necessary to introduce the following lemmas.

Lemma 9 (Reif, Gunther, Yaz, & Unbehauen, 1999). Assume there is
a stochastic process Vk(ξk) as well as real numbers ε, ε, µ > 0 and
0 < φ ≤ 1 such that

ε∥ξk∥
2

≤ Vk(ξk) ≤ ε∥ξk∥
2 (28)
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Algorithm 1: Event-triggered Cooperative Unscented Kalman
Filtering.
Part A: Local estimation update for each node i ∈ V
(1) Choose 2n + 1 sigma points at time instant k as

χ
i,s
k = x̂ik, s = 0

χ
i,s
k = x̂ik + (

√
(n + λ)Ξ i

k)s, s = 1, 2, . . . , n

χ
i,s
k = x̂ik − (

√
(n + λ)Ξ i

k)s−n, s = n + 1, n + 2, . . . , 2n.

(2) Calculate the predicted state and covariance

χ
i,s
k+1|k = f (χ i,s

k ), s = 0, 1, 2, . . . , 2n

x̂ik+1|k =

2n∑
s=0

Wm
s χ

i,s
k+1|k

P i
k+1|k =

2n∑
s=0

W c
s (χ

i,s
k+1|k − x̂ik+1|k)(χ

i,s
k+1|k − x̂ik+1|k)

T
+ Qk

ζ
i,s
k+1|k = h(χ i,s

k+1|k), s = 0, 1, 2, . . . , 2n

ẑ ik+1|k =

2n∑
s=0

Wm
s ζ

i,s
k+1|k

P i
zk+1zk+1

=

2n∑
s=0

W c
s (ζ

i,s
k+1|k − ẑ ik+1|k)(ζ

i,s
k+1|k − ẑ ik+1|k)

T
+ Ri

k+1

P i
xk+1zk+1

=

2n∑
s=0

W c
s (χ

i,s
k+1|k − x̂ik+1|k)(ζ

i,s
k+1|k − ẑ ik+1|k)

T .

where the scalar weights Wm
0 =

λ
n+λ

, W c
0 =

λ
n+λ

+ 1 − α2
+ β ,

Wm
s = W c

s =
1

2(n+λ) , s = 1, 2, . . . 2n and λ = α2(n + κ) − n.
(3) Calculate the value of γ i

k+1 using (3) and the filter gain matri-
ces K i

k+1 or M i
k+1 through (9) and (20).

(4) Update the local estimates x̂ik+1 and Ξ i
k+1 for each node i ∈ V

through (6) and (18).
Part B: Cooperative update based on neighbors
(5) Initialize the consensus algorithm as x̂ik+1,0 = x̂ik+1, Ξ i

k+1,0 =

Ξ i
k+1.

(6) Communicate the information pair (x̂ik+1, Ξ i
k+1) with neigh-

borhoods.
(7) Fuse the information according to (22).
(8) Update the estimates after L iterations as x̂ik+1 = x̂ik+1,L,
Ξ i

k+1 = Ξ i
k+1,L.

(9) Repeat the above steps.

and

E{Vk(ξk)|ξk−1} − Vk−1(ξk−1) ≤ µ − φVk−1(ξk−1) (29)

are fulfilled. Then the stochastic process is exponentially bounded in
mean square, i.e., we have

E{∥ξk∥
2
} ≤

ε

ε
E{∥ξ0∥

2
}(1 − φ)k +

µ

ε

k−1∑
i=1

(1 − φ)i (30)

and the stochastic process is bounded with probability one.

Lemma 10 (Xiong et al., 2006). Assume that matrices A ∈ Rn×n,
B ∈ Rn×n, if A > 0 and B > 0, then

A−1 > (A + B)−1. (31)

Lemma 11 (Xiong et al., 2006). Assume that matrices A ∈ Rm×m,
B ∈ Rm×n, C ∈ Rn×n, if A > 0 and C > 0, then

A−1 > B(BTAB + C)−1BT . (32)

Lemma 12 (Battistelli & Chisci, 2014). Given an integer N ≥ 2, a
set of positive definite matrices {Mi}

N
i=1 and a set of vectors {νi}

N
i=1,

the following inequality holds( N∑
i=1

Miνi
)T ( N∑

i=1

Mi
)−1( N∑

i=1

Miνi
)

≤

N∑
i=1

νT
i Miνi. (33)

Lemma 13 (Matei & Baras, 2012). Given a positive integer N, a set
of vectors {νi}

N
i=1, a set of non-negative scalars {pi}Ni=1 summing up to

one, and a positive definite matrix Q , the following inequality holds( N∑
i=1

piνi
)TQ ( N∑

i=1

piνi
)

≤

N∑
i=1

piνT
i Qνi. (34)

With these aforementioned lemmas and formulation as well as
Algorithm 1, it is ready to state and prove the main result of this
paper.

Theorem 14. Consider a sensor network described by the nonlinear
stochastic systems (1) and (2), as well as Algorithm 1. The estimation
error x̃ik+1 = xk+1 − x̂ik+1 is exponentially bounded in mean square
for any i ∈ V providing that the following assumptions are satisfied.
(1) Real numbers α, f , β, h ̸= 0 and α, f , β, h ̸= 0 exist such that
the following inequalities always hold:⎧⎨⎩α2In ≤ αi

k(α
i
k)

T
≤ α2In, f 2In ≤ F i

k(F
i
k)

T
≤ f

2
In

β2Im ≤ β i
k(β

i
k)

T
≤ β

2
Im, h2Im ≤ H i

k(H
i
k)

T
≤ h

2
Im.

(35)

(2) Real numbers pmax ≥ pmin > 0, q ≥ q > 0, r ≥ r > 0 and
p ≥ p > 0 exist such that the following inequalities always hold:{

pmin ≤ pi ≤ pmax, qIn ≤ Qk ≤ qIn
rIm ≤ Ri

k ≤ rIm, pIn ≤ P i
k+1|k ≤ pIn.

(36)

(3) The consensus weight matrix Π is row-stochastic and primitive.

Proof. At first, let us denote x̃k+1|k = col(x̃ik+1|k, i ∈ V) and
x̃k = col(x̃ik, i ∈ V). Denote p = (p1, . . . , pi, . . . , pN )T as
the Perron–Frobenius left eigenvector of the matrix Π L, where
Π L

= (π i,j
L )n×n. According to Assumption (3), it can be noted

that pi is a strictly positive component and pTΠ L
= pT , namely,∑

j∈V pjπ j,i
L = pi.

Define the following stochastic process with respect to x̃k+1|k:

Vk+1(x̃k+1|k) =

∑
i∈V

pi(x̃ik+1|k)
T (P i

k+1|k)
−1x̃ik+1|k. (37)

According to the assumption that pIn ≤ P i
k+1|k ≤ pIn, which can

be derived by Theorem 2 in Kluge et al. (2010), we easily get
pmin

p
∥x̃k+1|k∥

2
≤ Vk+1(x̃k+1|k) ≤

pmax

p
∥x̃k+1|k∥

2, (38)

which meets the condition (28) of Lemma 9. Note that
∑

j∈V π
i,j
L =

1 by consensus, then it follows from (6), (15), (23) and (24) that

x̃ik+1|k

= αi
kF

i
k(xk − x̂ik) + ωk

= αi
kF

i
k

[∑
j∈V

π
i,j
L (xk − x̂jk,0)

]
+ ωk

= αi
kF

i
k

[∑
j∈V

π
i,j
L (xk − x̂jk|k−1 − γ

j
kK

j
k(z

j
k − ẑ jk|k−1)
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− (1 − γ
j
k)M

j
k(z

j

τ
j
k−1

− ẑ jk|k−1))
]
+ ωk

=

∑
j∈V

Ω
i,j
k x̃jk|k−1 +

∑
j∈V

Λ
i,j
k (z jk − z j

τ
j
k−1

)

+

∑
j∈V

Θ
i,j
k ν

j
k + ωk (39)

where⎧⎪⎨⎪⎩
Ω

i,j
k = π

i,j
L αi

kF
i
k

(
I − γ

j
kK

j
kβ

j
kH

j
k − (1 − γ

j
k)M

j
kH

j
k

)
Λ

i,j
k = π

i,j
L αi

kF
i
k(1 − γ

j
k)M

j
k

Θ
i,j
k = π

i,j
L αi

kF
i
k

(
−γ

j
kK

j
k − (1 − γ

j
k)M

j
k

)
.

As a matter of convenience, let us define Ri,j
k =

∑
j∈V Ω

i,j
k x̃jk|k−1,

S i,j
k =

∑
j∈V Λ

i,j
k (z jk − z j

τ
j
k−1

), T i,j
k = U i,j

k + ωk,U
i,j
k =

∑
j∈V Θ

i,j
k ν

j
k.

Next, substituting (39) to (37) and taking the conditional
expectation yields

E
{
Vk+1(x̃k+1|k)|x̃k|k−1

}
= E

{∑
i∈V

pi(x̃ik+1|k)
T (P i

k+1|k)
−1x̃ik+1|k|x̃k|k−1

}
= Ψ x

k+1 + Ψ z
k+1 + Ψ

ν,ω
k+1 + Ψ

x,z
k+1 + Ψ

z,ν,ω
k+1 (40)

where

Ψ x
k+1 = E

{∑
i∈V

pi(Ri,j
k )T (P i

k+1|k)
−1Ri,j

k |x̃k|k−1

}
,

Ψ z
k+1 = E

{∑
i∈V

pi(S i,j
k )T (P i

k+1|k)
−1S i,j

k |x̃k|k−1

}
,

Ψ
ν,ω
k+1 = E

{∑
i∈V

pi(T i,j
k )T (P i

k+1|k)
−1T i,j

k |x̃k|k−1

}
,

Ψ
x,z
k+1 = E

{∑
i∈V

pi
[
(Ri,j

k )T (P i
k+1|k)

−1S i,j
k

+(S i,j
k )T (P i

k+1|k)
−1Ri,j

k

]
|x̃k|k−1

}
,

Ψ
z,ν,ω
k+1 = E

{∑
i∈V

pi
[
(S i,j

k )T (P i
k+1|k)

−1T i,j
k

+(T i,j
k )T (P i

k+1|k)
−1S i,j

k

]
|x̃k|k−1

}
.

In what follows, we will discuss each of these five terms in (40).
Firstly, we focus on the first term Ψ x

k+1, recall (25) and apply
Lemma 10, it is immediate to see that

(P i
k+1|k)

−1
≤ (αi

kF
i
k)

−T (Ξ i
k)

−1(αi
kF

i
k)

−1, (41)

the non-singularity of αi
kF

i
k can be guaranteed by Assumption (1)

of Theorem 14. Substituting (41) into the expression of Ψ x
k+1 gives

Ψ x
k+1 ≤ E

{∑
i∈V

pi(
∑
j∈V

π
i,j
L Γ

j
k x̃

j
k|k−1)

T (Ξ i
k)

−1

× (
∑
j∈V

π
i,j
L Γ

j
k x̃

j
k|k−1)|x̃k|k−1

}
(42)

where Γ
j
k = I − γ

j
kK

j
kβ

j
kH

j
k − (1 − γ

j
k)M

j
kH

j
k for convenience.

According to (9), (18), (20), (26) and (27) as well as the
consensus algorithm, we have

Ξ i
k =

∑
j∈V

π
i,j
L Ξ

j
k,0 ≥

∑
j∈V

π
i,j
L Γ

j
kP

j
k|k−1. (43)

Thus, we can rewrite (42) as

Ψ x
k+1

≤ E
{∑

i∈V

pi(
∑
j∈V

π
i,j
L Γ

j
kP

j
k|k−1(P

j
k|k−1)

−1x̃jk|k−1)
T

× (
∑
j∈V

π
i,j
L Γ

j
kP

j
k|k−1)

−1(
∑
j∈V

π
i,j
L Γ

j
kP

j
k|k−1

× (P j
k|k−1)

−1x̃jk|k−1)|x̃k|k−1

}
. (44)

Applying Lemma 12 to (44) and noting that
∑

j∈V pjπ j,i
L = pi

yields

Ψ x
k+1

≤ E
{∑

i∈V

pi
∑
j∈V

π
i,j
L (x̃jk|k−1)

T (P j
k|k−1)

−1

× (I − γ
j
kK

j
kβ

j
kH

j
k − (1 − γ

j
k)M

j
kH

j
k)x̃

j
k|k−1|x̃k|k−1

}
= E

{∑
j∈V

pj(x̃jk|k−1)
T (P j

k|k−1)
−1x̃jk|k−1|x̃k|k−1

}
−E

{∑
j∈V

pj(x̃jk|k−1)
T (P j

k|k−1)
−1

× (γ j
kK

j
kβ

j
kH

j
k + (1 − γ

j
k)M

j
kH

j
k)x̃

j
k|k−1|x̃k|k−1

}
. (45)

Next, we discuss the second half part of (45) in two cases. If γ
j
k =

1, inserting (26) and (27) into (9), and substituting the rearranged
expression of K j

k into (45), then on the basis of Lemma 11, we can
find a real number 0 < φ < φ1 ≤ 1, where

φ1 = min
{
λmin{(β j

sH
j
s)

T
[β j

sH
j
sP

j
s|s−1(β

j
sH

j
s)

T
+ Rj

s]
−1

β j
sH

j
s}/λmax[(P

j
s|s−1)

−1
], j ∈ V , s = 0, 1, . . . , k

}
,

such that

φ(P j
k|k−1)

−1

≤ (β j
kH

j
k)

T
[β

j
kH

j
kP

j
k|k−1(β

j
kH

j
k)

T
+ Rj

k]
−1β

j
kH

j
k, (46)

which is consistent with the results in Li et al. (2016). If γ
j
k =

0, substituting (20) into (45), similarly, we can also find a real
number 0 < φ < φ2 ≤ 1, where

φ2 = min
{
λmin{(H j

s)
T
[η1H j

sP
j
s|s−1(H

j
s)

T
+ η2Rj

s

+ η3δ
jI]

−1
H j

s}/λmax{[(1 + σ1)P
j
s|s−1]

−1
},

j ∈ V , s = 0, 1, . . . , k
}
,

such that

φ[η1P
j
k|k−1]

−1

≤ (H j
k)

T
[η1H

j
kP

j
k|k−1(H

j
k)

T
+ η2R

j
k + η3δ

jI]−1H j
k. (47)

Define φ∗
= min{φ1, φ2}, let 0 < φ < φ∗

≤ 1, (45) can be
rewritten as

Ψ x
k+1 ≤ (1 − φ)E{Vk(x̃k|k−1)}. (48)

Now, we proceed with the second term Ψ z
k+1, by virtue of

Lemma 13 and (1 − γ
j
k)

2
= 1 − γ

j
k , we have

Ψ z
k+1 ≤

α2f
2
m2

p
E
{∑

i∈V

pi
∑
j∈V

π
i,j
L (1 − γ

j
k)

× (z jk − z j
τ
j
k−1

)T (z jk − z j
τ
j
k−1

)|x̃k|k−1
}

≤
α2f

2
m2

p

∑
j∈V

pjδj. (49)

where we define m =
η1ph

η1ph2+η2r+η3δ
, δ is the minimum trigger

threshold.
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Consider the third term Ψ
ν,ω
k+1 ,

Ψ
ν,ω
k+1

≤
1
p
E
{∑

i∈V

pi[tr{(U i,j
k )TU i,j

k }

+ tr{ωT
kωk}]|x̃k|k−1

}
≤

1
p

{∑
i∈V

pi[α2f
2
r(k

2
+ m2)n

∑
j∈V

π
i,j
L + qn]

}
=

(α2f
2
r(k

2
+ m2) + q)n
p

∑
j∈V

pj. (50)

where we define k =
pβh

pβ2h2+r
.

Next, analyzing the fourth term Ψ
x,z
k+1 and applying Lemmas 1

and 13, we obtain

Ψ
x,z
k+1 ≤

1
p
E
{∑

i∈V

pitr[σ3R
i,j
k (Ri,j

k )T

+ σ−1
3 S i,j

k (S i,j
k )T ]|x̃k|k−1

}
≤

σ3pα2f
2
(1 + kβh + mh)

2
n

p

∑
j∈V

pj

+
σ−1
3 α2f

2
m2

p

∑
j∈V

pjδj. (51)

Similarly, we consider the last term Ψ
z,ν,ω
k+1 ,

Ψ
z,ν,ω
k+1 ≤

σ4(α2f
2
r(k

2
+ m2) + q)n
p

∑
j∈V

pj

+
σ−1
4 α2f

2
m2

p

∑
j∈V

pjδj (52)

where σ3 > 0 and σ4 > 0 are scalars.
Now, we define

µ
∆
=

(1 + σ4)(α2f
2
r(k

2
+ m2) + q)n + σ3pα2f

2
(1 + kβh + mh)

2
n

p

×

∑
j∈V

pj +
(1 + σ−1

3 + σ−1
4 )α2f

2
m2

p

∑
j∈V

pjδj.

Then, condition (29) is satisfied. According to Lemma 9, x̃k+1|k is
exponentially bounded in mean square, which naturally indicates
that each component x̃ik+1|k is also exponentially bounded in
mean square.

In order to prove the stochastic boundedness of the estimation
error x̃ik+1 in mean square, taking expectation from both sides of
(23), we can see that

E{∥x̃ik∥
2
} ≤ α−2f −2(E{∥x̃ik+1|k∥

2
} − E{∥ωk∥

2
}). (53)

Since the process noise ωk is also exponentially bounded in
mean square by applying the same method, we can naturally
draw a conclusion that the estimation error x̃ik+1 is exponentially
bounded in mean square, which completes the proof.

Remark 15. Assumption (1) has been widely used for the
stability analysis of the single Kalman-like filter (Kluge et al.,
2010; Li & Xia, 2012; Reif et al., 1999) and the consensus-based
one (Battistelli & Chisci, 2016; Li et al., 2016). The bounds on F i

k
and H i

k will hold provided that the functions f and hi are globally
Lipschitz (Li, Jia, & Du, 2018). Assumption (2) means the bounded-
ness of the covariance matrices, which is common in many works

discussing the stochastic stability (Li et al., 2017; Xiong et al.,
2006; Zheng & Fang, 2016). As for Assumption (3), the Metropolis
weights (Xiao, Boyd, & Lall, 2005) can guarantee, without a doubt,
that the consensus weight matrix Π is row-stochastic. Further,
the primitivity is associated with the connectivity of the graph
(see also Remark 6).

Remark 16. Note that, the utilization of Lemma 1 when deriv-
ing an upper bound Ξ i

k+1 for the filtering error covariance may
bring in conservativeness. Such conservativeness can be lessened
by selecting apposite scaling parameters σ1 and σ2. As can be
seen from the equations related with σ1 and σ2 in the above
stability analysis, the boundedness of the estimation errors for
the proposed algorithm can always be guaranteed with different
values of σ1 and σ2, even though the values of φ and µ will vary
accordingly.

5. Numerical results and analysis

This section aims to demonstrate the theoretical results in
previous sections via analyzing the effectiveness of the devel-
oped algorithm. A practical scenario involving a non-cooperative
moving target localization using multiple UAVs is utilized here to
justify the potential applicability of the proposed event-triggered
distributed filtering scheme.

As stated in Zengin and Dogan (2006), pursuing highly ma-
neuvering targets is regarded as one of the representative ap-
plications of multiple UAVs with onboard sensors, especially in
an adversarial environment. In a typical military application, the
operators in the ground station (command center) can command
a group of UAVs equipped with battery-powered sensors and
event-triggered schedulers to follow the non-cooperative ma-
neuvering target. Assume that the corresponding estimator of
each UAV is placed in the ground station. To reduce the com-
munication costs in sensor-to-estimator channels and extend the
working hours of UAVs, measurement signals are transmitted
to the corresponding estimators only when the pre-specified
triggering conditions are satisfied. For simplicity, the relative
distance and angle information from the target to each UAV are
assumed to be available as long as the moving target locates
within the detectable range of UAVs. It is worth mentioning that
a detailed discussion about the cooperative control problem of
multiple UAVs is beyond the scope of this paper and hence we re-
fer the interested readers to the related work (Ma & Hovakimyan,
2013) and references therein. The overall estimation architecture
is depicted in Fig. 1. It can be seen that each ground estimator
associated with its own UAV can exchange the local information
with its neighbors. That is the main reason why the multiple
UAVs can work cooperatively to track the ground moving target.
The kinematic model for the ground moving target is written as

xtk+1 = xtk + vkcos(θk) + ωx
k

ytk+1 = ytk + vksin(θk) + ω
y
k

vk+1 = vk + ϕk + ωv
k

θk+1 = θk + φk + ωθ
k

where (xtk, y
t
k) denotes the position and vk, θk, ϕk, φk are veloc-

ity, heading, acceleration and turn rate, respectively. Let ωk =

(ωx
k, ω

y
k, ω

v
k , ω

θ
k ) be zero mean Gaussian white noise sequence

with covariance Qk.
In the multiple UAVs tracking system, four UAVs are utilized

to detect the ground moving target and the measurement model
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Fig. 1. Architecture of the moving target localization using multiple UAVs
tracking system.

is simply described by Crassidis and Junkins (2004)

z ik =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
(xu,ik − xtk)2 + (yu,ik − ytk)2 + (zu,ik )2 + ν

d,i
k

arctan
( zu,ik√

(xu,ik − xtk)2 + (yu,ik − ytk)2

)
+ ν

e,i
k

arctan
(yu,ik − ytk
xu,ik − xtk

)
+ ν

a,i
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

i = 1, 2, 3, 4

where (xu,ik , yu,ik , zu,ik ) denotes the position of the ith UAV, which
is directly obtained from onboard GPS. ν i

k = (νd,i
k , ν

e,i
k , ν

a,i
k ) is

zero mean Gaussian white measurement noise with covariance
Ri
k. The communication network among ground estimators shown

in Fig. 1 is described by a connected undirected graph G = (V, E)
with nodes set V = {1, 2, 3, 4}. The consensus weights are set
equal to Metropolis weights (Xiao et al., 2005), i.e.

π i,j
=

⎧⎨⎩
1/(1 + max{di, dj}), if (i, j) ∈ E
1 −

∑
(i,j)∈E π i,j, if i = j

0, otherwise.

In the simulations, the parameters are chosen as α = 10−2,
β = 2, n + κ = 3, σ1 = σ2 = 0.02, L = 5, ϕk = 0.1,
φk = 0.1, Qk = diag{0.1, 0.1, 0.001, 0.001}, R1

k = R2
k =

R3
k = R4

k = diag{0.1, 0.001, 0.001}. Set the initial values as
x0|0 = [10, 10, 2, π/6]T , x̂10|0 = [10.5, 10.5, 1.8, 0.7]T , x̂20|0 =

[11, 11, 2.3, 0.6]T , x̂30|0 = [9.5, 9.5, 2.2, 0.8]T , x̂40|0 =

[9, 9, 1.7, 0.3]T , and P1
0|0 =P2

0|0 = P3
0|0 =P4

0|0 = diag{1, 1, 0.1, 0.1}.
The averaged root mean square errors (RMSEs) are used herein

to evaluate the tracking performance of the algorithms. The RM-
SEs of the position estimates over Nm Monte Carlo runs are
defined by

RMSE(k)

=
1
N

N∑
i=1

√ 1
Nm

Nm∑
m=1

(
(xtk − x̂t,ik|k)2 + (ytk − ŷt,ik|k)2

)
.

Moreover, the average communication rate for networks is sim-
ilarly defined as Li et al. (2017), i.e. γ =

1
N

∑N
i=1 γ i, where

γ i
=

1
K

∑K
k=1 γ i

k denotes the average communication rate for
node i and K is the number of samples. Without loss of generality,
all the triggering thresholds are assumed to be identical in this
simulation (i.e. δ1 = δ2 = δ3 = δ4 = δ). The behaviors of actual
states and their respective estimations with triggering threshold
δ = 1 are depicted in Figs. 2–6, which illustrates that the

Fig. 2. Actual and estimated states of xtk .

Fig. 3. Actual and estimated states of ytk .

Fig. 4. Actual and estimated states of vk .

presented algorithm has a satisfactory estimation performance.
Compared with the time-triggered mechanism, the measurement
transmission times are significantly reduced in Fig. 7.

To verify the necessity of using multiple UAVs to cooperatively
track a ground target, the proposed event-triggered cooperative
UKF (denoted by ECUKF) is compared with the standard UKF,
where only an UAV is utilized. Then the ECUKF algorithm is
further tested with different triggering thresholds. In fact, the
ECUKF degenerates to the CUKF in Li et al. (2016) if the event-
triggered threshold is taken to be δ = 0. The behaviors of the
RMSEs obtained over 150 Monte Carlo runs are shown in Fig. 8.
As can be seen, the ECUKF algorithm is roughly the same as the
UKF algorithm when δ = 0.1, despite the event-triggered data
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Fig. 5. Actual and estimated states of θk .

Fig. 6. Actual and estimated trajectories of the ground moving target.

Fig. 7. Event-triggered times for each node.

transmission mechanism leads to a reduction in the number of
measurement transmission. This is exactly how the consensus
algorithm compensates the effect of event-triggered transmission
to a great extent. Besides, the ECUKF suffers more performance
degradation as the triggering threshold increases. To this end, the
influence of triggering thresholds on the average communication
rate for networks is shown in Table 1, from which we can see that
the increase of triggering thresholds would contribute to a lower
measurement transmission frequency.

6. Conclusions

In this paper, we have investigated the event-triggered com-
munication schedules in weighted average consensus-based UKF

Fig. 8. Performance comparison with respect to RMSE in position.

Table 1
Influence of triggering thresholds.
δ 0 0.1 0.5 1

γ 1.0000 0.5950 0.3150 0.2400

framework. A significant reduction of the average sensor-to-
estimator communication rate can be realized on basis of the
event-triggered communication scheme. Furthermore, we can
get a desired balance between filtering performance and com-
munication rate by properly adjusting the triggering threshold.
In addition, the guaranteed stability of the proposed algorithm
is proved by means of stochastic stability theory. Finally, the
proposed algorithm is applied to non-cooperative moving tar-
get localization with multiple UAVs, which demonstrates the
effectiveness of the proposed algorithm. It can be noted from
the simulation results that the upper bounds for the approxi-
mate error covariance matrices can work well, but more analysis
should be done in the future to further understand the real
impact on the estimation performance. Future work would also
focus on designing an adaptive filtering algorithm with time-
varying threshold to obtain the desired data transmission rate
and considering the event-triggered mechanism in estimator-to-
estimator channel as well to further relax the communication
burdens.
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