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Globally Convergent Distributed Network
Localization Using Locally Measured Bearings

Xiaolei Li, Xiaoyuan Luo , and Shiyu Zhao

Abstract—This paper studies the problem of bearing-
based network localization, which aims to estimate the ab-
solute positions of the nodes in a network by using the
inter-node bearings measured in each node’s local refer-
ence frame and the absolute positions of a small number
of nodes called anchors. In the first part of the paper, we
propose a continuous-time localization algorithm, which
consists of coupled orientation and position estimation pro-
cedures. Compared to the existing works, the proposed
algorithm has a concise form and guarantees global esti-
mation convergence. In the second part of the paper, we
study the discrete-time case which is still an open problem
till now. We fill this gap by proposing a discrete-time local-
ization algorithm to globally localize three-dimensional net-
works using locally measured bearings. The discrete-time
algorithm does not require designing sufficiently small step
sizes to ensure convergence. Numerical simulation is pre-
sented to verify the proposed algorithms.

Index Terms—Bearing measurements, network localiza-
tion, orientation estimation.

I. INTRODUCTION

B EARING-BASED network localization studies how to lo-
calize a network of sensing nodes where each node can

only measure the relative bearings to their nearest neighbors.
This problem has received increasing research attention recently
due to the rapid development of bearing-only sensors, such as
optical cameras [1] and sensor arrays [2]. Compared to the
conventional approach of distance-based network localization,
where each node can measure the distances to their neighbors,
the advantage of the bearing-based approach is that it can be
formulated as a linear dynamical system whose global stabil-
ity can be easily analyzed [3]. However, one disadvantage of
the bearing-based approach is that each bearing, which can be
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represented by a unit vector, must be expressed in a global or
local reference frame. The problem of bearing-based network
localization in the presence of global reference frames has been
studied extensively [4]–[10]. However, global reference frames
may not be accurately measured in many environments, such as
indoors or urban canyons. The case without a global reference
frame known to each node deserves more research attention,
and is also the focus of our work in this paper.

A general approach to utilize measurements obtained in local
reference frames is orientation estimation. In particular, each
node could estimate its absolute orientation with respect to a
global reference frame using inter-neighbor relative orientation
measurements. Then, the estimated absolute orientations can be
used to convert the local measurements into the global reference
frame. This approach has been applied in formation control
and network localization problems [11]–[13]. Very recently, this
approach has also been applied to solve the problem of bearing-
based network localization in [14]. However, the algorithm in
[14] requires a Gram–Schmidt orthogonalization procedure at
each time instance. This orthogonalization procedure could not
ensure global convergence because singular matrices could not
be converted to rotation matrices by orthogonalization.

The problem of estimating fixed orientations should be distin-
guished from the problem of orientation control or synchroniza-
tion [15]–[20]. The latter problem requires that the orientation
matrix obtained at every time instance be constrained to be a
rotation matrix. As a comparison, the estimation of fixed orien-
tations is not subject to this constraint, although the estimated
orientations should eventually converge to the true orientations
which are rotation matrices. Therefore, the orthogonalization
procedure in the algorithms in [13] and [14] is redundant when
the orientations to be estimated are fixed. After dropping the or-
thogonalization procedure, the orientation estimation problem
could be simply formulated as a linear time-invariant system as
shown in this paper.

The contributions of this paper are twofold. The first contri-
bution is to propose a continuous-time network localization al-
gorithm merely using local bearing and relative orientation mea-
surements. This algorithm consists of coupled orientation and
position estimation procedures. Since no orthogonalization is
needed, the algorithm has a concise form and, more importantly,
guarantees global convergence as opposed to [14]. The second
contribution is to solve the problem of discrete-time bearing-
based network localization. This problem has not been com-
pletely solved even in the presence of global reference frames,
although the work in [21] has solved the two-dimensional case.
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We propose a new discrete-time bearing-based localization algo-
rithm that can localize three-dimensional networks in the pres-
ence of a global reference frame known to each node. We further
propose algorithms to solve the case without global reference
frames. The proposed discrete-time algorithms are globally con-
vergent and do not require designing sufficiently small step sizes
to ensure system convergence.

The paper is organized as follows. Section II gives necessary
preliminaries and the statement of the problem to be solved in
this paper. The continuous-time and discrete-time network lo-
calization problems are, respectively, studied in Sections III and
IV. Simulation results are given in Section V and conclusions
are drawn in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations for Network Localization

Consider n stationary sensing nodes in Rd (n ≥ 2 and d =
2, 3). Suppose Σ0 is a fixed global reference frame. Let pi ∈ Rd

be the true position of node i ∈ {1, . . . , n} expressed in Σ0 and
p = [pT

1 , . . . , pT
n ]T ∈ Rdn . Suppose Σi is a fixed body reference

frame for node i. The origin of Σi is at pi . Let Ri ∈ Rd×d

satisfying RT
i Ri = Id and det Ri = 1 be the rotation matrix

from Σi to Σ0 . The orientation of node i is represented by Ri .
The interaction among the nodes is described by a fixed graph

G = (V, E), which consists of a vertex set V = {1, . . . , n} and
an edge set E ⊆ V × V . The edge (i, j) ∈ E indicates that node i
can measure the relative bearing of node j and, in the meantime,
can receive necessary information from node j via wireless
communication. Then, node j is called a neighbor of i and the
set of neighbors of node i is denoted as Ni := {j ∈ V : (i, j) ∈
E}. This paper only consider connected and undirected graphs
where (i, j) ∈ E ⇔ (j, i) ∈ E . A network, denoted as (G, p), is
G with its vertex i mapped to pi for all i ∈ V .

Suppose the first na nodes, called anchors, know their
true positions and orientations. The rest nf = n − na nodes,
called followers, do not know their own positions or orienta-
tions. Let Va = {1, . . . , na} and Vf = V\Va be the sets of an-
chors and followers, respectively. Let pa = [pT

1 , . . . , pT
na

]T and
pf = [pT

na +1 , . . . , p
T
n ]T . Then p = [pT

a , pT
f ]T .

If (i, j) ∈ E , then

gij :=
pj − pi

‖pj − pi‖
is the unit vector representing the relative bearing of pj with
respect to pi . Note that gij = −gji . In this paper, ‖ · ‖ denotes
the Euclidean norm of a vector or the spectral norm of a matrix.
Let g

(i)
ij be the local version of bearing gij measured by node i

in Σi . Specifically

gij = Rig
(i)
ij .

For a vector x ∈ Rd , define

Px := Id − xxT

where Id ∈ Rd×d is the identity matrix. If x is a unit vector with
‖x‖ = 1, it can be verified that Px is positive semidefinite and

Null(Px) = span{x}. Geometrically, Px is an orthogonal pro-
jection matrix that can project any vector onto the orthogonal
compliment of x. This orthogonal projection matrix is widely
used in bearing-based control and estimation problems because
it is able to describe parallel bearing vectors in arbitrary dimen-
sions [3], [10], [22]. It must be noted that, if x is not a unit vector
(i.e., ‖x‖ �= 1), Px may not be positive semidefinite anymore.

B. Problem Statement

Suppose p̂i and R̂i are the estimates of position pi and ori-
entation Ri for i ∈ V , respectively. If i ∈ Va , then p̂i = pi and
R̂i = Ri . The problem to be solved in this paper is formally
stated as below.

Problem 1 (Bearing-Based Network Localization): For
network (G, p), design a distributed algorithm to estimate the
position pi and orientation Ri of follower i ∈ Vf merely using

the local bearing measurements {g(i)
ij }j∈Ni

and relative orienta-

tions {RiR
T
j }j∈Ni

such that p̂i and R̂i converge to pi and Ri ,
respectively.

In order to solve Problem 1, two questions must be answered.
The first is whether the network can be possibly localized. The
second is, if the network is localizable, how to localize it in a
distributed manner. The answer to the first question is bearing
localizability [10], the preliminaries of which are given in the
next subsection. The second question is the focus of the rest of
the paper.

In Problem 1, each node is supposed to be able to measure
the local bearings and the relative orientations of its neighbors.
While bearings can be measured by bearing-only sensors, it may
be difficult to directly measure relative orientations in practice.
Fortunately, relative orientations may be calculated using local
bearing measurements. In particular, consider a pair of neigh-
boring nodes i and j whose local bearing measurements are g

(i)
ij

and g
(j )
j i . Suppose the two nodes share their local bearings with

each other via wireless communication. Since gij = Rig
(i)
ij ,

gji = Rjg
(j )
j i , and gij = −gji , we have Rig

(i)
ij = −Rjg

(j )
j i and

hence

(RT
j Ri)g

(i)
ij = −g

(j )
j i . (1)

The relative orientation RT
j Ri can be calculated from g

(i)
ij and

g
(j )
j i based on (1) as described below. 1) For networks in two

dimensions, RT
j Ri is a rotation matrix parameterized by the

angle between g
(i)
ij and −g

(j )
j i . 2) For networks in three dimen-

sions, if one axis of the body frames of all the nodes are aligned,
this is equivalent to the two-dimensional case. The alignment of
one axis of the body frames could be realized by, for example,
using gravity sensors which provide a three-dimensional vector
indicating the direction of the gravity force. 3) For general net-
works without such an alignment, there would exist an infinite
number of RT

j Ri satisfying (1). In this case, the calculation of
the relative orientations requires more sophisticated algorithms
as shown in [6]. Note that the results in [6] are only applicable
to some special three-dimensional networks. It still remains an
open problem to obtain relative orientations from local bearings
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in general networks. This problem is out of the scope of this
paper and will be studied in the future. It, however, should be
noted that the results presented in this paper are applicable to
general networks in three dimensions as long as the relative
orientations could be obtained in any way.

Finally, it is worth noting that {RiR
T
j }j∈Ni

and {RT
j Ri}j∈Ni

are different relative orientation measurements because they do
not imply each other since Ri and RT

j may not commute. How-
ever, either of the measurements can be applied to orientation
estimation. In particular, the algorithms proposed in this paper
rely on the measurements of {RiR

T
j }j∈Ni

. Otherwise, if the
measurements of {RT

j Ri}j∈Ni
are available, we show later that

the proposed algorithms can be easily modified to incorporate
these measurements.

C. Preliminaries to Bearing Localizability

A network that can be localized using bearing measurements
must satisfy certain architectural requirements, which are called
bearing localizability conditions [10]. Preliminaries to bearing
localizability are summarized as below.

Definition 1 (Bearing Localizability [10]): The network
(G, p) is called bearing localizable if the value of p can be
uniquely determined by the interneighbor bearings {gij}(i,j )∈E
and the positions of the anchors {pi}i∈Va

.
The necessary and sufficient condition of bearing localizabil-

ity can be described by the following matrix. In particular, define
B ∈ Rdn×dn with the ijth block of submatrix as

[B]ij =

⎧
⎨

⎩

0d×d , i �= j, (i, j) /∈ E
−Pgi j

, i �= j, (i, j) ∈ E∑
k∈Ni

Pgi k
, i = j, i ∈ V

.

The matrix B is a matrix-weighted graph Laplacian matrix. It
is called the bearing Laplacian since it characterizes both the
underlying graph and the bearings of the network. The bearing
Laplacian matrix plays important roles in bearing-based control
and estimation problems [10], [23]. According to the partition
of anchors and followers, partition B as

B =
[Baa Baf

Bf a Bff

]

where Bff ∈ Rdnf ×dnf . Since the graph is undirected, it can
be easily shown that B is symmetric positive semi definite and
so is Bff . The necessary and sufficient condition of bearing
localizability can be characterized by the nonsigularity of Bff as
shown below.

Lemma 1 (Condition for Bearing Localizability [10]):
The network (G, p) is bearing localizable if and only if Bff

is nonsingular and hence positive definite. When Bff is non-
singular, the positions of the followers can be expressed as
pf = −B−1

ff Bf apa .
This paper only considers bearing localizable networks. Oth-

erwise, it is impossible to localize all the followers.
In order to ensure bearing localizability, there must exist suf-

ficient and appropriately selected anchors. It is worth noting that
at least two anchors are required to ensure bearing localizability.

Details on anchor selection and examples of bearing localizable
networks can be found in [10].

III. CONTINUOUS-TIME LOCALIZATION ALGORITHMS

This section proposes continuous-time algorithms to solve
Problem 1. In particular, we first present an orientation estima-
tion algorithm and then apply it to solve the network localization
problem.

A. Continuous-Time Orientation Estimation

Let R̂i(t) be the estimate of Ri at time t ≥ 0. For i ∈ Va ,
R̂i(t) = Ri for all t. For i ∈ Vf , the proposed orientation esti-
mation algorithm is

˙̂
Ri(t) = −

∑

j∈Ni

aij (R̂i(t) − RiR
T
j R̂j (t)) i ∈ Vf (2)

where aij is a constant positive weight for edge (i, j) ∈ E .
The measurements required by (2) are the relative orientations
{RiR

T
j }j∈Ni

.
The algorithm in (2) is similar to those in [13], [14], but it

does not require the orthogonalization procedure. As a result,
R̂i(t) in (2) may not be a rotation matrix any more. In fact,
it is unnecessary to require R̂i(t) to be a rotation matrix for
every t, although R̂i(t) is expected to converge to Ri , which
is a rotation matrix, as t → ∞. If R̂i(t) is not constrained as a
rotation matrix, (2) is a linear matrix differential equation that
can be decomposed into d vector equations by considering the
d columns of R̂i and proved to be globally convergent.

Theorem 1 (Orientation Estimation Convergence): If
(G, p) is connected and undirected, given arbitrary initial es-
timates {R̂i(0)}i∈Vf

, R̂i(t) converges to Ri globally and expo-
nentially fast for all i ∈ Vf by algorithm (2).

Proof: Multiplying RT
i on both sides of (2) gives

RT
i

˙̂
Ri = −

∑

j∈Ni

aij (RT
i R̂i − RT

j R̂j ) i ∈ Vf . (3)

Denote

Xi = RT
i R̂i , i ∈ V.

Let xi,k ∈ Rd be the kth column of Xi where k = 1, . . . , d.
If i ∈ Va , Xi = Id and hence xi,k = ek where ek is the kth
column of the identity matrix. Substituting Xi into (3) gives

ẋi,k = −
∑

j∈Ni

aij (xi,k − xj,k ) i ∈ Vf , k = 1, . . . , d. (4)

For each k, (4) is the same as the consensus algorithms with
multiple leaders (i.e., containment control algorithms) [24]–
[26]. Since the interactions among the followers are undirected,
the underlying graph of the network has a united spanning tree.1

As a result, xi,k for i ∈ Vf converges to the convex hull spanned
by xi,k for all i ∈ Va . Since xi,k are equal to ek for all i ∈ Va ,
it follows that xi,k converges to ek for i ∈ Vf . As a result,

1A directed graph with multiple leaders has a united directed spanning tree
if, for each follower, there exists at least one leader that has a directed path to
the follower [26, pp. 110].
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Xi = RT
i R̂i converges to Id and consequently R̂i converges to

Ri for all i ∈ Vf . Since the error dynamical system is linear, the
convergence is exponentially fast [27, Corollary 4.3]. �

Two remarks on algorithm (2) are given below. 1) While the
underlying sensing graph is assumed to be undirected and lo-
calizable, this graphical condition could be relaxed to having
a united spanning tree as can be seen from (4). For the sake
of consistency, we simply consider undirected and connected
graphs in this paper. 2) Algorithm (2) requires that node i must
know the relative orientations {RiR

T
j }(i,j )∈E . If different mea-

surements of {RT
j Ri}(i,j )∈E are available, we may use a slightly

different algorithm

˙̂
Ri(t) = −

∑

j∈Ni

aij (R̂i(t) − R̂j (t)RT
j Ri) i ∈ Vf

to estimate Ri . The global stability of this algorithm can be sim-
ilarly proved by multiplying RT

i on both sides of the equation.

B. Continuous-Time Network Localization

Now we propose a distributed localization algorithm to solve
Problem 1. For i ∈ Va , then p̂i(t) = pi for all t. For i ∈ Vf , the
proposed localization algorithm is

˙̂pi(t) = −
∑

j∈Ni

Pĝi j (t)(p̂i(t) − p̂j (t)) i ∈ Vf (5)

where

Pĝi j (t) = Id − ĝij (t)ĝT
ij (t), ĝij (t) = R̂i(t)g

(i)
ij .

The orientation estimate R̂i(t) is governed by (2).
Since R̂i(t) in (2) may not be a rotation matrix, ĝij may not

be a unit vector and hence Pĝi j (t) may not be positive defi-
nite. This is the main technical challenge to analyze the system
convergence.

Theorem 2 (Network Localization Convergence): If
(G, p) is bearing localizable, given arbitrary initial estimates
{p̂i(0)}i∈Vf

and {R̂i(0)}i∈Vf
, p̂i(t) converges to pi globally

asymptotically for all i ∈ Vf under the action of (5) and (2).
Proof: Note that (5) and (2) form a cascade nonlinear sys-

tem. Its stability can be analyzed by the input-to-state-stability
and Lyapunov approaches. The proof consists of three parts.

Part 1. Matrix form: The matrix-vector form of (5) is

˙̂pf = −B̂ff p̂f − B̂f apa (6)

where B̂ff and B̂f a are obtained by replacing gij by ĝij in Bff

and Bf a , respectively. Define

Δff := B̂ff − Bff

Δf a := B̂f a − Bf a .

Hence, (6) can be rewritten as

˙̂pf = −(Bff + Δff )p̂f − (Bf a + Δf a)pa

= −Bff p̂f − Bf apa − (Δff p̂f + Δf apa)

= −Bff (p̂f − pf ) − (Δff p̂f + Δf apa) (7)

where the last equality is due to pf = −B−1
ff Bf apa as shown

in Lemma 1. The following proof aims showing that Δff p̂f +
Δf apa converges to zero. To do that, it is necessary to show the
boundedness of p̂f first.

Part 2. Boundedness: Consider the Lyapunov function

V =
1
2
‖p̂f − pf ‖2 .

Let λmin be the smallest eigenvalue of Bff . Since Bff is positive
definite, we have λmin > 0. Then,

V̇ = (p̂f − pf )T ˙̂pf

= (p̂f − pf )T (−Bff (p̂f − pf ) − (Δff p̂f + Δf apa))

= −(p̂f − pf )T Bff (p̂f − pf )

− (p̂f − pf )T (Δff p̂f + Δf apa)

≤ −λmin‖p̂f − pf ‖2 + ‖p̂f − pf ‖‖Δff p̂f + Δf apa‖
≤ ‖p̂f − pf ‖ (−λmin‖p̂f − pf ‖ + ‖Δff p̂f + Δf apa‖) .

(8)

Note that ‖Δff p̂f + Δf apa‖ = ‖Δff p̂f − Δff pf + Δff pf

+ Δf apa‖ ≤ ‖Δff ‖‖p̂f − pf ‖ + ‖Δff pf + Δf apa‖. Substi-
tuting it into (8) gives

V̇ ≤ ‖p̂f − pf ‖ (−λmin(Bff )‖p̂f − pf ‖
+‖Δff ‖‖p̂f − pf ‖ + ‖Δff pf + Δf apa‖) . (9)

Since R̂i converges to Ri exponentially fast by Theorem 1, we
know that ĝij → gij and consequently Δff → 0 and Δf a → 0
exponentially fast as t → ∞. As a result, given any μ ∈
(0, λmin) and γ > 0, there exists a finite time T > 0 such that,
for all t > T , ‖Δff ‖ < μ and ‖Δff pf + Δf apa‖ < γ. Then,
inequality (9) becomes

V̇ ≤ ‖p̂f − pf ‖ ((μ − λmin)‖p̂f − pf ‖ + γ)

= −(λmin − μ)‖p̂f − pf ‖
(

‖p̂f − pf ‖ − γ

λmin − μ

)

.

(10)

Denote b := γ/(λmin − μ) > 0. It follows from (10) that V̇ <
0 if ‖p̂f − pf ‖ > b. As a result, if ‖p̂f (T ) − pf ‖ ≤ b, then
‖p̂f (t) − pf ‖ ≤ b for all t ∈ [T,∞); if ‖p̂f (T ) − pf ‖ > b,
then ‖p̂f (t) − pf ‖ is nonincreasing and hence bounded for all
t ∈ [T,∞). Finally, since T is finite and p̂f would not diverge
in finite time, p̂f (t) is also bounded within [0, T ]. Therefore,
‖p̂f − pf ‖ is bounded for all t. The boundedness of ‖p̂f − pf ‖
implies the boundedness of ‖p̂f ‖.

Part 3. Convergence: Note that

‖Δff p̂f + Δf apa‖ ≤ ‖Δff ‖‖p̂f ‖ + ‖Δf a‖‖pa‖.
Since ĝij converges to gij , we know ‖Δff ‖ and ‖Δf a‖ con-
verge to zero. It follows from the boundedness of ‖p̂f ‖ that
‖Δff p̂f + Δf apa‖ → 0 as t → ∞. When Δff p̂f + Δf apa =
0, system (7) becomes

˙̂pf = −Bff (p̂f − pf ). (11)
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It is obvious that p̂f in (11) converges to pf . It follows from
(11) that the error dynamics of p̂f − pf are linear and hence
input-to-state stable [27, pp. 175]. Then, p̂f in (7) converges to
pf as Δff p̂f + Δf apa → 0. �

IV. DISCRETE-TIME LOCALIZATION ALGORITHMS

This section studies discrete-time algorithms for bearing-
based network localization.

A. Discrete-Time Localization With Global Bearings

We first propose an algorithm to localize a network using
bearings measured in a global reference frame.

Let p̂i(k) be the estimate of pi where k ∈ {1, 2, . . . }. For
i ∈ Va , we have p̂i(k) = pi for all k. For follower i ∈ Vf , the
proposed localization algorithm is

p̂i(k + 1) = p̂i(k) − W−1
i

∑

j∈Ni

Pgi j
(p̂i(k) − p̂j (k)) (12)

where

Wi =
∑

j∈Ni

Pgi j
+ Λi (13)

and Λi ∈ Rd×d can be selected as any positive-definite matrix.
The nonsingularity of Wi is always guaranteed because both∑

j∈Ni
Pgi j

and Λi are positive definite. The matrix
∑

j∈Ni
Pgi j

being positive definite is because Bff is positive definite and so
is every diagonal block matrix of Bff .

As will be shown later, any positive definite Λi would
guarantee estimation convergence. However, different Λi may
lead to different convergence rate of the algorithm. As will
be demonstrated by simulation later, larger Λi would lead
to slower convergence rate because the incremental term
W−1

i

∑
j∈Ni

Pgi j
[p̂i(k) − p̂j (k)] would be smaller.

As a special yet important case, select Λi to be

Λi = |Ni |Id −
∑

j∈Ni

Pgi j
+ αiId (14)

where αi can be selected as any positive constant and |Ni | de-
notes the number of neighbors of node i. The matrix Λi in (14)
is positive definite because Λi =

∑
j∈Ni

(Id − Pgi j
) + αiId =

∑
j∈Ni

gij g
T
ij + αiId > 0. Substituting (14) into (13) gives

Wi = (|Ni | + αi)I . As a result, the localization algorithm in
(12) becomes

p̂i(k + 1) = p̂i(k) − 1
|Ni | + αi

∑

j∈Ni

Pgi j
(p̂i(k) − p̂j (k)).

(15)

Algorithm (15) will be useful to design localization algorithms
based on locally measured bearings.

1) Convergence Analysis: Let W = blkdiag(Wi) ∈
Rdnf ×dnf . The matrix-vector form of (12) is

p̂f (k + 1) = p̂f (k) − W−1(Bff p̂f (k) + Bf apa)

=
(
I − W−1Bff

)
p̂f (k) − W−1Bf apa . (16)

Denote the localization error as

δpf
(k) := p̂f (k) − pf = p̂f (k) + B−1

ff Bf apa . (17)

It then follows from (16) that:

δpf
(k + 1) =

(
I − W−1Bff

)
δpf

(k). (18)

The discrete-time system in (18) is convergent if and only if
I − W−1Bff is Schur, which means ρ(I − W−1Bff ) < 1, where
ρ(·) denotes the spectrum radius of a matrix.

Split Bff such that Bff = Dff − Eff where Dff ∈ Rdnf ×dnf

and Eff ∈ Rdnf ×dnf contain the diagonal and off-diagonal
block matrices ofBff , respectively. In particular, the ith diagonal
d × d block of Dff is [Dff ]ii =

∑
j∈Ni

Pgi j
and the other entries

of Dff are zero. The ijth d × d block of Eff is [Eff ]ij = Pgi j

if j ∈ Ni and the other entries of Eff are zero.
We next present a useful lemma and then the convergence

result of (18).
Lemma 2: The matrix 2Dff − Bff is positive semidefinite.
Proof: Note that 2Dff − Bff = 2Dff − (Dff − Eff ) =

Dff + Eff . Split Dff as Dff = Da
ff + Df

ff where Da
ff and Df

ff

are block diagonal matrices. The ith diagonal blocks of them
are

[
Da

ff

]

ii
=

∑

j∈Ni ∩Va

Pgi j
,

[
Df

ff

]

ii
=

∑

j∈Ni ∩Vf

Pgi j
.

For any vector v = [. . . , vT
i , . . . ]T ∈ Rdnf , we have

vT (2Dff − Bff )v = vT (Dff + Eff )v

= vT Da
ff v + vT (Df

ff + Eff )v.

It can be verified that

vT Da
ff v =

∑

i∈Vf

vT
i

⎛

⎝
∑

j∈Ni ∩Va

Pgi j

⎞

⎠ vi,

vT (Df
ff + Eff )v =

∑

i∈Vf

∑

j∈Ni ∩Vf

(vi + vj )T Pgi j
(vi + vj ).

As a result, vT Da
ff v ≥ 0 and vT (Df

ff + Eff )v ≥ 0, and conse-
quently vT (2Dff − Bff )v ≥ 0. Therefore, 2Dff − Bff is posi-
tive semidefinite. �

Theorem 3 (Network Localization Convergence): If
(G, p) is bearing localizable, given arbitrary initial estimates
{p̂i(0)}i∈Vf

, p̂i(k) converges to pi globally and exponentially
fast for all i ∈ Vf under the action of (12) if Λi > 0 for all
i ∈ Vf .

Proof: Let Λ = blkdiag(Λi) ∈ Rdnf ×dnf . Then, W =
Dff + Λ. It follows from Lemma 2 that Bff ≤ 2Dff , which
further implies thatBff < 2Dff + 2Λ = 2W when Λ > 0. Mul-
tiplying W− 1

2 on both sides of the inequality of Bff < 2W leads
to

W− 1
2 Bff W− 1

2 < 2I.

Since W− 1
2 Bff W− 1

2 is positive definite, its eigenvalues are real
and positive. The above inequality suggests that the eigenvalues
of W− 1

2 Bff W− 1
2 are located in the interval of (0,2). Note that

W− 1
2 Bff W− 1

2 and W−1Bff have the same spectrum because
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they can be obtained from each other by similar transforma-
tions. In particular, W− 1

2 Bff W− 1
2 = W

1
2 (W−1Bff )W− 1

2 . As
a result, the eigenvalues of W−1Bff are also real and located
in (0,2). Hence, the eigenvalues of I − W−1Bff are real and
located in (−1, 1). Therefore, ρ(I − W−1Bff ) < 1 and system
(18) is convergent. Since (18) is a linear system, it converges
exponentially fast [28, Th. 5.9]. �

In Theorem 3, the condition that Λi > 0 is merely sufficient
but not necessary for the system convergence. When Λi = 0 for
all i, the algorithm is still convergent when the network satisfies
2Dff − Bff > 0, as can be seen from the proof of Theorem 3.

It follows from Theorem 3 that algorithm (15) is convergent
when αi > 0, because Λi > 0 when αi > 0.

B. Discrete-Time Localization With Local Bearings

This subsection considers the discrete-time case where all
bearings are measured in local reference frames.

First of all, we present a discrete-time orientation estimation
algorithm. For i ∈ Va , let R̂i(k) = Ri for all k. For i ∈ Vf , the
estimation algorithm is

R̂i(k + 1) = R̂i(k) − 1
wi

∑

j∈Ni

aij

[
R̂i(k) − RiR

T
j R̂j (k)

]

(19)

where

wi =
∑

j∈Ni

aij + βi.

In the above equations, aij is a positive constant weight for edge
(i, j) ∈ E and aij = aji , and βi can be selected as any positive
constant. Note that R̂i(k) in (19) may not be a rotation matrix.

The convergence of (19) is analyzed below. Let L ∈ Rn×n be
the graph Laplacian with aij as the weight for edge (i, j) ∈ E .
Partition L according to the partition of anchors and followers
as

L =
[

Laa Laf

Lf a Lff

]

where Lf a ∈ Rnf ×na and Lff ∈ Rnf ×nf .
Theorem 4 (Orientation Estimation Convergence): If

(G, p) is connected and undirected, given arbitrary initial es-
timates {R̂i(0)}i∈Vf

, R̂i(k) converges to Ri globally and expo-
nentially fast for all i ∈ Vf under the action of (19) if βi > 0
for all i ∈ Vf .

Proof: Multiplying RT
i on both sides of (19) gives

RT
i R̂i(k + 1) = RT

i R̂i(k)

− 1
wi

∑

j∈Ni

aij

(
RT

i R̂i(k)−RT
j R̂j (k)

)
. (20)

Let Xi(k) = RT
i R̂i(k) and xi,�(k) ∈ Rd be the �th column of

Xi(k) where � = 1, . . . , d. Then, (20) can be rewritten as

xi,�(k + 1) = xi,�(k) − 1
wi

∑

j∈Ni

aij (xi,�(k) − xj,�(k)). (21)

Equation (21) is similar to the discrete-time containment control
algorithms (i.e., consensus algorithms with multiple anchors)
[29]. The difference lies in wi . Since the interactions among
the followers are undirected and connected, the entire graph
has a united spanning tree. As a result, Lff is nonsingular and
−L−1

ff Lf a1nf
= 1na

[26, Lemma 5.1]. Then, (21) can be writ-
ten in a matrix-vector form as

xf (k + 1) = xf (k) − W−1(Lff ⊗ Id)xf (k)

− W−1(Lf a ⊗ Id)xa

where W = blkdiag(wiId) ∈ Rdnf ×dnf , xa = [xT
1 , . . . ,

xT
na

]T ∈ Rdna , and xf = [xT
na +1 , . . . , x

T
n ]T ∈ Rdnf . The

subscript � is dropped in the above equation for the sake of
simplicity. Now define the error state as δf (k) = xf (k) +
(L−1

ff Lf a ⊗ Id)xa . It then can be obtained that δf (k + 1) =
[Idnf

− W−1(Lff ⊗ Id)]δf (k). Similar to the proof of Theo-
rem 3, it can be shown that ρ(Idnf

− W−1(Lff ⊗ Id)) < 1. As
a result, δf (k) converges to zero. Since it is linear system, it
converges exponentially fast [28, Th. 5.9]. �

Now we propose a discrete-time localization algorithm based
on (15) and (19). For anchor i ∈ Va , p̂i(k) = pi . For follower
i ∈ Vf , the proposed localization algorithm is

p̂i(k + 1) = p̂i(k) − 1
|Ni | + αi

∑

j∈Ni

Pĝi j (k)(p̂i(k) − p̂j (k))

(22)

where

Pĝi j (k) = Id − ĝij (k)ĝT
ij (k), ĝij (k) = R̂i(k)g(i)

ij

and R̂i(k) is governed by (19). It should be noted that, since
R̂i(k) may not be a rotation matrix, ĝij (k) may not be a unit
vector and Pĝi j (k) may not be positive definite.

The convergence of the proposed localization algorithm is
analyzed below.

Theorem 5 (Network Localization Convergence): If
(G, p) is bearing localizable, given arbitrary initial estimates
{p̂i(0)}i∈Vf

and {R̂i(0)}i∈Vf
, p̂i(k) converges to pi globally

asymptotically for all i ∈ Vf under the action of (22) and (19)
if αi, βi > 0 for all i ∈ Vf .

Proof: The proof consists of three parts.
Part 1. Matrix form: Rewrite (22) in a matrix-vector form as

p̂f (k + 1) = p̂f (k) − W−1(B̂ff p̂f (k) + B̂f apa) (23)

where W = blkdiag((|Ni | + αi)Id) ∈ Rdnf ×dnf , and B̂ff and
B̂f a are obtained by replacing gij by ĝij in Bff and Bf a , respec-
tively. Define Δff := B̂ff − Bff and Δf a := B̂f a − Bf a . Then,
(23) can be expressed as

p̂f (k + 1) = p̂f (k) − W−1(Bff p̂f (k) + Bf apa)

− W−1(Δff p̂f (k) + Δf apa)

Then, the error δf (k) as defined in (17) satisfies δf (k + 1) =
(I−W−1Bff ) δf (k) −W−1 (Δff p̂f (k) + Δf apa) =(I−W−1

Bff )δf (k) − W−1(Δff p̂f (k) − Δff pf + Δff pf + Δf apa) =
(I − W−1 Bff ) δf (k) − W−1 Δff δf (k) − W−1 (Δff pf +
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Δf apa). For the sake of simplicity, let A := I − W−1Bff and
h := −W−1(Δff pf + Δf apa). Then, the error dynamics can
be written as

δf (k + 1) = Aδf (k) − W−1Δff δf (k) + h. (24)

Part 2. Boundedness: Consider any positive definite matrix
Q ∈ Rdnf ×dnf . Since A is Schur, there exists a unique positive-
definite matrix P ∈ Rdnf ×dnf such that AT PA − P = −Q
[28]. Consider the Lyapunov function

V (k) = δT (k)Pδ(k).

It follows from (24) that:

V (k + 1) − V (k)

= δT (k + 1)Pδ(k + 1) − δT (k)Pδ(k)

= (Aδf (k) − W−1Δff δf (k) + h)T P

× (Aδf (k) − W−1Δff δf (k) + h) − δT (k)Pδ(k)

= δT
f (k)AT PAδf (k) − δT (k)Pδ(k)

+ (−W−1Δff δf (k) + h)T P (−W−1Δff δf (k) + h)

+ 2δT
f (k)AT P (−W−1Δff δf (k) + h)

= −δT
f (k)Qδf (k)

+ (W−1Δff δf (k) − h)T P (W−1Δff δf (k) − h)

+ 2δT
f (k)AT P (−W−1Δff δf (k) + h).

Note that −δT
f (k)Qδf (k) ≤ −λmin(Q)‖δf (k)‖2 . Based on the

inequalities of vector norms, the above equation implies

V (k + 1) − V (k) ≤ −λmin(Q)‖δf (k)‖2 + η1(k)‖δf (k)‖2

+ η2(k)‖δf (k)‖ + η3(k)

where the right-hand side is a quadratic function of ‖δf (k)‖. The
expressions of η1 , η2 , and η3 can be easily obtained and omitted
here. It must be noted that η1 , η2 , and η3 are all functions of
the norms of Δff and Δf a . Since R̂i(k) converges to Ri expo-
nentially fast, we know that ĝij → gij , ‖Δff ‖, ‖Δf a‖ → 0, and
consequently η1 , η2 , η3 → 0 exponentially fast. As a result, for
any constants c1 , c2 , c3 > 0 where c1 ≤ λmin(Q), there exists a
positive integer m such that, for all k ≥ m, we have η1(k) ≤ c1 ,
η2(k) ≤ c2 , and η3(k) ≤ c3 . Then, we have

V (k + 1) − V (k)

≤ −λmin(Q)‖δf (k)‖2 + c1‖δf (k)‖2 + c2‖δf (k)‖ + c3 ,

= (−λmin(Q) + c1)‖δf (k)‖2 + c2‖δf (k)‖ + c3 .

Since −λmin(Q) + c1 < 0, the right-hand side of the
above inequality is negative when ‖δf (k)‖ ≥ (c2 +
√

c2
2 + 2c3(λmin(Q) − c1)) / (2(λmin (Q) − c1)) : = r > 0.

As a result, when ‖δf (k)‖ ≥ r, the Lyapunov function V (k)
is nonincreasing and remains bounded, which implies that
‖δf (k)‖ is bounded for k ≥ m. Since ‖δf (k)‖ is bounded for
all k < m, it is bounded for all k.

Fig. 1. True three-dimensional network to be localized. The red-green-
blue lines represent the body frame for each node.

Fig. 2. Initial estimates of the positions and orientations of the nodes.
Note that the initial estimates of the orientations are not required to be
rotation matrices.

Part 3. Convergence: Since ‖δf ‖ is bounded, the term
−W−1Δff δf (k) + h in (24) converges to zero. Since (24) with-
out the term of −W−1Δff δf (k) + h is linear time-invariant
and hence input-to-state stable, we have δf (k) → 0 when
−W−1Δff δf (k) + h → 0 [30]. �

V. SIMULATION EXAMPLES

Two simulation examples are given in this section to verify
the effectiveness of the proposed algorithms.

The true network for the two simulation examples is shown
in Fig. 1. This network consists of 27 nodes, where two of them
are anchors and the rest 25 nodes are followers. The red-green-
blue lines represent the body frames for the nodes. As shown
in Fig. 1, the nodes located in the same horizontal layer have
the same orientation, but nodes in different layers have different
orientations. The random initial estimates of the positions and
orientations of the followers are given in Fig. 2. Note that the
initial estimates of the orientations could be arbitrary matrices
rather than rotation matrices.

Simulation results for the continuous-time orientation esti-
mation and localization algorithms in (2) and (5) are shown in
Fig. 3. As can be seen in Fig. 3(a)–(b), both orientation and
localization errors converge to zero eventually. Fig. 3(c) shows
the simulation results when the Gram–Schmidt orthogonaliza-
tion procedure in [14] is used. In particular, R̂i is orthogonalized
and then substituted to calculate ĝij in (5), whereas algorithm
(2) is unchanged. As can be seen, the orthogonalization does
not change the convergence rate significantly. However, it brings
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Fig. 3. Simulation results for the continuous-time algorithms in (5) and
(2). (a) Initial estimates (hollow dots) and final estimates (solid dots). (b)
Orientation error: ‖R̂i − Ri‖; position error: ‖p̂i − pi‖. (c) The orthogo-
nalization procedure in [14] is added to (5).

additional problems. For example, the global convergence prop-
erty is invalid and the orthogonalization would fail when R̂i is
singular.

Simulation results for the discrete-time orientation estimation
and localization algorithms in (19) and (22) are shown in Fig. 4.

Fig. 4. Simulation results for the discrete-time algorithms in (22) and
(19). Orientation error: ‖R̂i − Ri‖; position error: ‖p̂i − pi‖. (a) Initial
estimates (hollow dots) and final estimates (solid dots). (b) αi = 0 and
βi = 0 for all i ∈ Vf . (c) αi = 5 and βi = 5 for all i ∈ Vf .

Fig. 4(a)–(b) show the results when αi and βi in (19) and (22)
are selected to be zero for all i ∈ Vf . As can be seen, both
orientation and localization errors converge to zero eventually. It
verifies that αi > 0 and βi > 0 are sufficient but not necessary to
ensure estimation convergence. Fig. 4(c) shows the simulation
results when αi = 5 and βi = 5. As can be seen, the system
is still convergent, but the convergence rate is slower, which
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verifies that large αi and βi would slow down the convergence
rate.

VI. CONCLUSION

In this paper, we presented both continuous-time and discrete-
time distributed algorithms to solve the problem of network
localization using locally measured bearings. The proposed al-
gorithms consist of coupled orientation and position estimation
procedures. It has been shown that when a network is bearing
localizable, the orientation and position estimation errors con-
verge to zero given arbitrary initial estimates. The results in this
paper could be generalized in different directions by consider-
ing more realistic scenarios where the network is directed and
switching and suffers from measurement noises or time delays.
In particular, this paper only considered the case of accurate
measurements. In practice, the measurements may be corrupted
by measurement errors. There are two different sources of mea-
surement errors. The first is the measurement errors in the an-
chors’ absolute positions, and the second is the measurement
errors of the relative orientations and anchors’ absolute orien-
tations. If there are no orientation errors, bounded anchor posi-
tion errors would result in bounded localization estimation error
since the estimation problem is a linear system. However, when
there are orientation errors, the problem becomes much more
complex and the estimation convergence may be jeopardized
[10]. The tolerance of a network to orientation errors deserves
further study in the future.
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