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Bearing-Only Formation Control With
Prespecified Convergence Time

Zhenhong Li , Hilton Tnunay , Shiyu Zhao, Wei Meng ,
Sheng Q. Xie , Senior Member, IEEE, and Zhengtao Ding , Senior Member, IEEE

Abstract—This article considers the bearing-only formation
control problem, where the control of each agent only relies
on relative bearings of their neighbors. A new control law is
proposed to achieve target formations in finite time. Different
from the existing results, the control law is based on a time-
varying scaling gain. Hence, the convergence time can be
arbitrarily chosen by users, and the derivative of the control
input is continuous. Furthermore, sufficient conditions are given
to guarantee almost global convergence and interagent collision
avoidance. Then, a leader–follower control structure is proposed
to achieve global convergence. By exploring the properties of the
bearing Laplacian matrix, the collision avoidance and smooth
control input are preserved. A multirobot hardware platform
is designed to validate the theoretical results. Both simula-
tion and experimental results demonstrate the effectiveness of
our design.

Index Terms—Bearing-only formation control, finite-time for-
mation control, prescribed-time consensus.

I. INTRODUCTION

FORMATION control, as an important realm of multiagent
cooperative control, has been extensively studied in recent

decades [1]. In the literature (see [2]–[9]), numerous control
laws have been designed to achieve target formations with
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the assumption that relative positions or distances between
agents are measurable. However, this assumption is not always
easy to satisfy, especially when agents have no access to an
external localization system [10]. Recently, the bearing-only
control laws have been proposed and attracted much attention
(see [11]–[18]). Instead of relative positions and distances, tar-
get formations of bearing-only control laws are defined by
relative bearings that can be obtained by vision sensors [19]
or wireless sensor arrays [20]. Due to the accessibility of
relative bearings, bearing-only control laws provide potential
solutions to achieve formation control merely using onboard
sensing.

In 2-D space, some early results on bearing-constrained
formation control can be found in [11] and [12]. Based on
the parallel rigidity theory, Bishop et al. [11] introduced the
bearing-constrained rigidity matrix and proposed a control law
with locally asymptotic stability. Although the target formation
is defined by relative bearings, the measurements of relative
positions are still required. This requirement is then removed
by introducing a decentralized position estimator [12]. To
achieve bearing-only formation control in high-dimensional
space, Zhao and Zelazo [13] extended the bearing rigidity
theory to arbitrary dimensions and proposed a control law
for infinitesimally bearing rigid formations with almost global
asymptotic stability. To further characterize the algebraic prop-
erties of bearing rigid formations, the bearing Laplacian matrix
is proposed in [14]. This matrix can be used to examine
the uniqueness of target formations in arbitrary dimensions.
Based on this powerful tool, a new bearing-only control law
is designed in the recent work [15], and global exponential
convergence is guaranteed.

Due to the time requirement of many formation con-
trol tasks, convergence time is regarded as an important
performance indicator. To achieve faster convergence rate,
finite-time control has been widely studied in multiagent
systems (see [8], [21]–[26]). However, the intrinsic nonlin-
earity of bearing vectors makes the finite-time convergence
analysis of bearing-only control nontrivial. A few works have
been done for the finite-time bearing-only formation control
(see [16]–[18]). Zhao et al. [16] used signum functions to
suppress relative bearing errors and hence achieved finite-
time convergence. However, the results can only be applied to
cyclic formations. Instead of signum functions, the controllers
in [17] and [18] use fractional power bearing feedback and
achieve almost global convergence for infinitesimally bear-
ing rigid formations. However, the convergence time of the
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aforementioned results is all determined by initial conditions,
and hence cannot be prespecified by users. Moreover, the use
of signum functions and fractional power feedback will lead
to nonsmooth control input. In other words, bearing-only for-
mation control in prespecified finite time remains an open
problem.

In this article, we investigate bearing-only formation con-
trol with prespecified convergence time. A new control law
is proposed for leaderless formation control by introducing
a time-varying gain to the regular feedback of relative bear-
ings. Sufficient conditions are derived to achieve almost global
finite-time convergence while avoiding collisions. Different
from the results in [16]–[18], the convergence time can be
prespecified and arbitrarily chosen by users. Furthermore,
since no fractional power feedback is used, the control
input is C1 smooth everywhere. The design of time-varying
gain is partly inspired by the work on finite-time regulation
of nonlinear systems [27]. However, different from relative
position-based formation control, for bearing-only formation
control, relative bearing vectors are unit vectors, that is, a
smaller position error does not imply a smaller bearing error.
This phenomenon makes it difficult to establish the bounded-
ness of control input especially when the time-varying gain
is unbounded, which implies the stability analysis method
in [27] cannot be directly applied to our case. Then, we design
a leader–follower control structure for our proposed control
law. By further exploring the properties of bearing Laplacian
matrix, we prove that, with the leader–follower control struc-
ture, the global convergence can be achieved in prespecified
finite time while avoiding the collisions (rather than the almost
global convergence in [13]). Finally, a multirobot hardware
platform is designed, and both simulation and experimental
results verify the effectiveness of the proposed control laws.

The remainder of this article is organized as follows.
Section II introduces some necessary preliminaries and
problem setup. Sections III and IV present the main results on
the control law design and stability analysis for the leaderless
case and leader–follower case, respectively. The simulation
results and experimental validation are given in Sections V
and VI. Conclusions are drawn in Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

Let R>0 denote the set of positive real numbers. In ∈ R
n×n

denotes the identity matrix, and 1n denotes an n-dimensional
column vector with all elements are equal to one. For a
series of column vectors x1, . . . , xn, col(x1, . . . , xn) represents
a column vector by stacking them together; span{x1, . . . , xn}
represents the linear span of the vectors. For a matrix A, A > 0
(or A ≥ 0) means that A is positive definite (or positive
semidefinite); λi(A) is the ith eigenvalue of A; and null(A)

and range(A) are the null and range spaces of A, respec-
tively. For a series of matrices A1, . . . , An, diag(Ai) denotes
the block-diagonal matrix with diagonal blocks A1, . . . , An.
‖·‖ represents the Euclidean norm of a vector or the spec-
tral norm of a matrix. ⊗ denotes the Kronecker product of
matrices.

Fig. 1. Geometric relationship between gij, ġij, eij, and ėij.

B. Preliminaries

Consider a group of n mobile agents in R
d (n ≥ 2 and

d ≥ 2). Let pi(t) ∈ R
d be the position of the agent i

at time t. The configuration of the agents is denoted as
p = col(p1, . . . , pn) ∈ R

dn. The interaction among agents
is described by an undirected graph G = {V, E}, where
V = {1, . . . , n} is the set of vertices and E ⊆ V × V is the
set of edges. The edge (i, j) ∈ E if agent i can measure the
relative bearing of agent j. Since the graph is undirected, we
have (i, j) ∈ E ⇔ (j, i) ∈ E . The formation, denoted as (G, p),
is G with each vertex i ∈ V mapped to the point pi. The set
of neighbors of agent i is denoted as Ni = {j ∈ V : (i, j) ∈ E}.
An orientation of an undirected graph is the assignment of
a direction to each edge. An oriented graph is an undirected
graph with an orientation. Let m be the number of undirected
edges. Then, the oriented graph has m directed edges. The inci-
dence matrix of the oriented graph is denoted as H ∈ R

m×n,
where [H]ki = −1 if vertex i is the tail of edge k; [H]ki = 1
if vertex i is the head of edge k; and [H]ki = 0 otherwise.
For an undirected connected graph, it holds that H1n = 0 and
rank(H) = n − 1 [28].

For edge (i, j), we define the edge vector and the bearing
vector, respectively, as

eij := pj − pi, gij := eij
∥
∥eij

∥
∥

where gij represents the relative bearing of pj with respect to pi.
Obviously, we have eij = −eji, gij = −gji, and ‖gij‖ = 1. For
any nonzero vector x ∈ R

d, define the operator P : R
d →

R
d×d as

Px := Id − xxT

xTx
where Px is an orthogonal projection matrix that can geo-
metrically project any vector onto the orthogonal complement
of x. Note that Px is positive semidefinite, P2

x = Px, and
null(Px) = span(x). It follows that Pxy = 0 ∀y ∈ R

d ⇔ y
is parallel to x. Since Px can be used to check whether
two bearings are parallel, it is widely used in bearing-based
control [14], [29]. Direct evaluation gives

ġij = Pgij
∥
∥eij

∥
∥

ėij.

Together with gT
ijPgij = 0, we have that gT

ij ġij = 0 and
eT

ij ġij = 0. Fig. 1 shows the geometric relationship between
gij, ġij, eij, and ėij when ‖eij‖ < 1.

Suppose (i, j) corresponds to the kth directed edge in the
oriented graph, where k ∈ {1, . . . , m}. The edge and bearing
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vectors of the kth directed edge are defined as

ek := eij = pj − pi, gk := ek

‖ek‖ .

Similarly, we have gT
k ġk = 0 and eT

k ġk = 0. It follows from
the definition of H that e = H̄p, where e = col(e1, . . . , em)

and H̄ = H ⊗ Id.
To characterize the properties of a formation, we intro-

duce the bearing Laplacian matrix B(G, p) ∈ R
dn×dn with

the (i, j)th block of submatrix as [14]

[B(G, p)
]

ij =
⎧

⎨

⎩

0d×d, i �= j, (i, j) /∈ E
−Pgij , i �= j, (i, j) ∈ E
∑

j∈Ni
Pgij , i = j, i ∈ V .

To simplify the notation, we use B instead of B(G, p).
According to the definition of bearing the Laplacian matrix, we
have that B ≥ 0, Bp = 0, B1dn = 0, and B = H̄Tdiag(Pgk)H̄.
Letting (G, p) and (G, p′) be two formations with the same
bearing Laplacian matrix, we give the following definition.

Definition 1 (Infinitesimal Bearing Rigidity) [13]: A forma-
tion (G, p) is infinitesimally bearing rigid if p′−p corresponds
to translational and scaling motions ⇔ B(p′ − p) = 0.

The above definition implies that an infinitesimally bear-
ing rigid formation is uniquely determined up to a translation
and a scaling. Note that the definition of infinitesimal bear-
ing rigidity in [13] is based on the bearing rigidity matrix.
In this article, Definition 1 is based on the bearing Laplacian
matrix B.

Lemma 1 [14]: For an infinitesimally bearing rigid forma-
tion, the following properties hold:

1) null(B) = span{1 ⊗ Id, p};
2) rank(B) = dn − d − 1, that is, the eigenvalues of B rep-

resented as λ1(B) = · · · = λd+1(B) = 0 < λd+2(B) ≤
· · · ≤ λdn(B);

3) Partition B as

B =
[Bll Blf

BT
lf Bff

]

(1)

where Bll ∈ R
dnl , Blf ∈ R

dnf , and nl and nf ∈ R>0
satisfying nl + nf = n. Then, Bff > 0 if nl ≥ 2.

The above lemma bridges the gap between the rigidity of
a formation and algebraic properties of the bearing Laplacian
matrix, which plays an important role in the stability anal-
ysis. Lemma 1 3) implies that if more than two points of
an infinitesimally bearing rigid formation are fixed then the
configuration p is uniquely determined. More results on the
uniqueness of infinitesimally bearing rigid formation are given
in [14].

C. Problem Statement

The dynamics of mobile agents are

ṗi = ui, i ∈ V
where ui ∈ R

d is the velocity input of agent i. The main
objective of this article is given as follows.

Problem 1: Design control input for agent i ∈ V based on
the bearing vectors {gij(t)}j∈Ni such that p → p∗ for t →

t0 + T , and p = p∗ for t ≥ t0 + T , where p∗ is a target
configuration and T ∈ R>0 is a prespecified convergence time.
The following assumption holds throughout this article.

Assumption 1 (Target Formation): The target formation
(G, p∗) is infinitesimally bearing rigid.

Remark 1: Assumption 1 is commonly used to build the
connection between the target configuration p∗ and the tar-
get bearing vectors {g∗

ij}(i,j)∈E (e.g., [14] and [15]). Then,
Problem 1 can be transferred into a stabilization problem of
bearing vectors in prespecified finite time.

III. BEARING-ONLY LEADERLESS FORMATION CONTROL

In this section, we propose a bearing-only leaderless control
law to solve Problem 1. The control law of each mobile agent
is designed as

ui = −
(

a + b
μ̇

μ

)
∑

j∈Ni

Pgijg
∗
ij, i ∈ V (2)

where a, b ∈ R>0 are positive feedback gains, and μ : R>0 →
R>0 is a time-varying scaling function defined as

μ(t) =
{

Th

(t0+T−t)h , t ∈ [t0, t0 + T)

1, t ∈ [t0 + T,∞)
(3)

and h ∈ R>0 is a user-chosen parameter. Note that

μ̇(t) =
{

h
T μ

(

1+ 1
h

)

, t ∈ [t0, t0 + T)

0, t ∈ [t0 + T,∞)

where we use the right-hand derivative of μ(t) at t = t0 + T
as μ̇(t0 + T). The time-varying scaling function μ(t) plays a
key role in achieving prespecified finite-time control. For any
c ∈ R>0, we have μ−c(t0) = 1, limt→(t0+T)− μ−c(t) = 0, and
μ(t)−c is monotonically decreasing on [t0, t0 + T).

Since control law (2) is based on an implicit assumption
that gij ∀(i, j) ∈ E are well defined, we make the following
assumption.

Assumption 2 (Collision Avoidance): During the formation
evolvement, no neighboring agents collide with each other.

Assumption 2 is widely used in the existing formation
control results [30], [31], since it is nontrivial to analyze
the system convergence if collision avoidance is considered.
In this article, we first analyze system convergence under
Assumption 2. Then, we will present sufficient conditions
based on initial formation such that system convergence and
collision avoidance can be simultaneously guaranteed, and
hence the assumption could be dropped.

To analyze the finite-time convergence of the closed-loop
system, we introduce the following lemma.

Lemma 2: Consider a continuously differentiable function
y : R → R≥0 satisfying that

ẏ(t) ≤ −αy − β
μ̇

μ
y, t ∈ [t0,∞) (4)

where α, β ∈ R>0. Then, it follows that:

y(t)

{≤ μ−βe−α(t−t0)y(t0), t ∈ [t0, t0 + T)

≡ 0, t ∈ [t0 + T,∞).
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Fig. 2. Geometric relationship between δ and the surface S.

Proof: Multiplying μβ on both sides of (4), we obtain

μβ ẏ ≤ −αμβy − βμβ−1μ̇y.

Together with [(d(μβy))/(dt)] = βμβ−1μ̇y + μβ ẏ, we have
that

d
(

μβy
)

dt
≤ −αμβy

which further implies that

μβy(t) ≤ e−α(t−t0)μ(t0)
βy(t0)

= e−α(t−t0)y(t0), t ∈ [t0, t0 + T). (5)

From (5), we can obtain that y(t) ≤ e−α(t−t0)μ−βy(t0) ∀t ∈
[t0, t0 + T). By the continuity of y and limt→(t0+T)− y(t) = 0,
we know that y(t0 + T) = 0, and furthermore from ẏ ≤ 0
∀t ∈ [t0 + T,∞), we know that 0 ≤ y(t) ≤ y(t0 + T) ∀t ∈
[t0 + T,∞) and that y(t) ≡ 0 ∀t ∈ [t0 + T,∞).

Before analyzing the convergence, we first show some use-
ful properties of (2). Define centroid and scale of a formation

as p̄ := (1/n)
∑n

i=1 pi and s :=
√

(1/n)
∑n

i=1 ‖pi − p̄‖2.
Lemma 3: Under Assumption 2 and control law (2), p̄

and s are invariant. Furthermore, ‖pi(t) − pj(t)‖ ≤ 2s
√

n − 1
∀i, j ∈ V ∀t ≥ t0.

Proof: By following the analysis in [13, Th. 9], it can be
proved that ˙̄p ≡ 0 and ṡ ≡ 0, which implies the invariance of
p̄ and s.

Considering that pi − p̄ = −∑

j∈V,j �=i(pj − p̄), we can obtain
that ‖pi − p̄‖2 = ‖∑

j∈V,j �=i(pj − p̄)‖2 ≤ (n−1)
∑

j∈V,j �=i ‖pj −
p̄‖2 which further implies that ‖pi − p̄‖ ≤ s

√
n − 1 ∀i ∈ V ,

and that ‖pi −pj‖ ≤ ‖pi − p̄‖+‖pj − p̄‖ ≤ 2s
√

n − 1 ∀i, j ∈ V
∀t ≥ t0.

Let δi = pi − p∗
i , δ = col(δ1, . . . , δn), r = p − (1n ⊗ p̄),

r∗ = p∗ − (1n ⊗ p̄∗), and s∗ =
√

(1/n)
∑n

i=1

∥
∥p∗

i − p̄∗∥∥2. With
the control law (2), the dynamics of δ can be written in a
compact form as

δ̇ =
(

a + b
μ̇

μ

)

H̄Tdiag
(

Pgk

)

g∗. (6)

Lemma 3 implies that the target centroid and the target scale
can be achieved by setting p̄(t0) = p̄∗ and s(t0) = s∗. To
further analyze the equilibriums of the closed-loop system (6),
we present the following lemma.

Lemma 4: Under Assumptions 1 and 2 and control law (2),
setting p̄(t0) = p̄∗ and s(t0) = s∗, the trajectory of δ evolves

on the surface of the sphere S = {δ ∈ R
dn : ‖δ + r∗‖ = ‖r∗‖},

and the closed-loop system (6) has two equilibriums δ = 0 and
δ = −2r∗. Moreover the equilibrium δ = −2r∗ is unstable.

Proof: By Lemma 3, we can know that ‖r‖ = √
ns(t0) =√

ns∗ = ‖r∗‖. Since p̄ = p̄∗, we have δ = p− (1n ⊗ p̄)− (p∗ −
(1n ⊗ p̄∗)), and consequently ‖δ + r∗‖ = ‖r‖ = ‖r∗‖. Hence,
the trajectory of δ evolves on the surface S .

Let δ̇i = (a + b[μ̇/μ])fi(δi) = −(a + b[μ̇/μ])
∑

j∈Ni
Pgijg

∗
ij

and f (δ) = col(f1(δ1), . . . , fn(δn)) = H̄Tdiag(Pgk)g
∗. The

equilibriums of (6) belong to S and satisfy f (δ) = 0. Then, it
follows that:

(

p∗)T
f (δ) = (

p∗H̄
)Tdiag

(

Pgk

)

g∗

=
m

∑

k=1

‖e∗
k‖

(

g∗
k

)T
Pgk g∗

k = 0.

Due to the fact that Pgk ≥ 0, we have gk = ±g∗
k ∀k =

1, . . . , m. For the case gk = g∗
k , by Assumption 1, the

formation with bearing constraints {g∗
k}k=1,...,m is uniquely

determined up to a translation and a scaling. Together with the
centroid p̄ = p̄∗ and the scale s = s∗, the formation is uniquely
determined, that is, we have p = p∗ and δ = 0. For the case
gk = −g∗

k , similarly, we know that the formation with bear-
ing constraints {−g∗

k}k=1,...,m, p̄ = p̄∗ and s = s∗, is uniquely
determined and has the same centroid, scale, and shape with
(G, p∗). Furthermore, since ‖p − 1n ⊗ p̄∗‖ = ‖p∗ − 1n ⊗ p̄∗‖,
we can conclude that p = 1n ⊗ 2p̄∗ − p∗ and δ = −2r∗,
which further implies that the formation with δ = −2r∗ is
geometrically a point reflection of (G, p∗).

For the reason that (a + b[μ̇/μ]) > 0, the stability of the
equilibrium δ = −2r∗ is determined by the Jacobian matrix
of f (δ). Let F = [(∂f (δ))/(∂δ)] be the Jacobian matrix of f (δ)
with the (i, j)th block of submatrix defined as

[F]ij =

⎧

⎪⎨

⎪⎩

0d×d, i �= j, (i, j) /∈ E
∂fi(δ)
∂δj

, i �= j, (i, j) ∈ E
∂fi(δ)
∂δi

, i = j, i ∈ V .

Following the similar analysis in [13, Th. 9], it can be proved
that F|δ=−2r∗ ≥ 0 and F has at least one positive eigenvalue.
Hence, the equilibrium δ = −2r∗ is unstable.

Remark 2: The geometric relationship between δ and the
surface S is shown in Fig. 2. The angle between δ and −r∗
is denoted as θ . Note that δ can always be decoupled as δ =
δ‖ + δ⊥, where δ‖ is parallel to −r∗ and δ⊥ is perpendicular
to −r∗.

Note that Lemmas 3 and 4 all based on the assumption that
gij ∀(i, j) ∈ E is well defined. The following result will show
that the interagent distances are lower bounded by γ if some
initial conditions are satisfied.

Theorem 1: Under Assumption 1 and control law (2), for
a constant 0 < γ < mini,j∈V,i �=j‖p∗

i − p∗
j ‖, the interagent dis-

tances are lower bounded by γ , that is, ‖pi(t) − pj(t)‖ > γ

∀i, j ∈ V ∀t > t0 if

‖δ(t0)‖ <
mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥ − γ

√
n

. (7)
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Proof: Before analyzing the interagent distances, we first
show that ‖δ(t)‖ is upper bounded by ‖δ(t0)‖ for t ≥ t0.

Consider the following Lyapunov function candidate:

V = 1

2
δTδ.

By (6), the time derivative of V is obtained as

V̇ =
(

a + b
μ̇

μ

)
(

p − p∗)T
H̄Tdiag

(

Pgk

)

g∗

= −
(

a + b
μ̇

μ

)

e∗Tdiag
(

Pgk

)

g∗

= −
(

a + b
μ̇

μ

) m
∑

k=1

∥
∥e∗

k

∥
∥
(

g∗
k

)T
Pgk g∗

k ≤ 0. (8)

It follows that ‖δ(t)‖ ≤ ‖δ(t0)‖ ∀t ≥ t0.
Since pi − pj = (pi − p∗

i ) − (pj − p∗
j ) + (p∗

i − p∗
j ), we obtain

that

‖pi − pj‖ ≥
∥
∥
∥p∗

i − p∗
j

∥
∥
∥ − ∥

∥pi − p∗
i

∥
∥ −

∥
∥
∥pj − p∗

j

∥
∥
∥

≥
∥
∥
∥p∗

i − p∗
j

∥
∥
∥ −

n
∑

i=1

∥
∥pi − p∗

i

∥
∥

≥
∥
∥
∥p∗

i − p∗
j

∥
∥
∥ − √

n
∥
∥p − p∗∥∥

≥
∥
∥
∥p∗

i − p∗
j

∥
∥
∥ − √

nδ(t)

where we have used the fact that n‖p−p∗‖2 ≥ ∑n
i=1 ‖pi−p∗

i ‖2.
Together with (7) and ‖δ(t)‖ ≤ ‖δ(t0)‖, we can conclude that
‖pi(t) − pj(t)‖ > γ ∀i, j ∈ V ∀t > t0.

Remark 3: From (7), we can observe that the upper bound
of ‖δ(t0)‖ is proportional to mini,j∈V‖p∗

i − p∗
j ‖ and (1/

√
n).

The intuitive explanation of condition (7) is that, for a large
group of agents with a small target configuration, to avoid the
collisions, the initial error δ(t0) has to be small.

Now, we are in the position to give the first main result of
this article.

Theorem 2: Under Assumption 1, Problem 1 is solved by
control law (2) if condition (7) is satisfied, δ(t0) �= −2r∗,
p̄(t0) = p̄∗, s(t0) = s∗, and

bhλd+2
(B∗)(sin2θ(t0)

)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

> 8(n − 1)
(

s∗)2
. (9)

Furthermore, ‖pi(t) − pj(t)‖ > γ ∀i, j ∈ V , and the control
input u = col(u1, . . . , un) remains C1 smooth and uniformly
bounded over the time interval [t0,∞).

Proof: It follows from (8) that:

V̇ = −
(

a + b
μ̇

μ

) m
∑

k=1

∥
∥e∗

k

∥
∥(gk)

TPg∗
k
gk

= −
(

a + b
μ̇

μ

) m
∑

k=1

∥
∥e∗

k

∥
∥

‖ek‖2
eT

k Pg∗
k
ek

≤ −
(

a + b
μ̇

μ

) mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

maxi,j∈V,i �=j
∥
∥pi − pj

∥
∥2

pTH̄Tdiag
(

Pg∗
k

)

H̄p

= −
(

a + b
μ̇

μ

) mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

maxi,j∈V,i �=j
∥
∥pi − pj

∥
∥2

δTH̄Tdiag
(

Pg∗
k

)

H̄δ

(10)

where we have used the facts that (gk)
TPg∗

k
gk = (g∗

k)
TPgk g∗

k
and Pg∗

k
e∗ = 0 to obtain the first and last equalities, respec-

tively. Since s(t) = s(t0) = s∗, in light of Lemma 3, we obtain
that maxi,j∈V‖pi − pj‖2 ≤ 4(n − 1)(s∗)2, and furthermore that

V̇ ≤ −
(

a + b
μ̇

μ

)mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

4(n − 1)(s∗)2
δTB∗δ

where B∗ = B(G, p∗). By Lemma 1, we know that null(B∗) =
span{1 ⊗ Id, p∗} = span{1 ⊗ Id, r∗}. Since p̄ = p̄(t0) = p̄∗
according to Lemma 3, we have (1 ⊗ Id)

Tδ = 0. Together
with the facts that δ = δ‖ +δ⊥, (1⊗ Id)

Tδ‖ = (1⊗ Id)
Tr∗ = 0,

and δT⊥r∗ = 0, we can conclude that δ⊥ ⊥ null(B∗), which
further implies that δTB∗δ = δT⊥B∗δ⊥ ≥ λd+2(B∗)δT⊥δ⊥. From
Lemma 4, we have δ evolves on S and δT⊥δ⊥ = sin2θδTδ (see
Fig. 2). It can be observed from Fig. 2 that θ ∈ [0, [π/2]).
Since ‖δ(t)‖ ≤ ‖δ(t0)‖ ∀t > t0, we know that θ(t) ≥ θ(t0).

Based on the above analysis, we obtain that

V̇ ≤ −
aλd+2(B∗)

(

sin2θ(t0)
)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

4(n − 1)(s∗)2
︸ ︷︷ ︸

ᾱ1

‖δ(t)‖2

−
bλd+2(B∗)

(

sin2θ(t0)
)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

4(n − 1)(s∗)2
︸ ︷︷ ︸

β̄1

μ̇

μ
‖δ(t)‖2

= −2ᾱ1V − 2β̄1
μ̇

μ
V.

Then, we can conclude from Lemma 2 that

‖δ(t)‖
{≤ μ−β̄1 e−ᾱ1(t−t0)‖δ(t0)‖, t ∈ [t0, t0 + T)

≡ 0, t ∈ [t0 + T,∞)
(11)

which implies that p converges to p∗ in user prespecified finite
time T . In the following, we will show that u remains C1

smooth and uniformly bounded.
By (2), we obtain that

‖u‖ ≤
(

a + b
μ̇

μ

)

‖H̄‖∥∥diag
(

Pgk

)

g∗∥∥.

Since

∥
∥diag

(

Pgk

)

g∗∥∥2 = gTdiag
(

Pg∗
k

)

g =
m

∑

k=1

1

‖ek‖2
eT

k Pg∗
k
ek (12)

and ‖ek‖ ≥ γ (from Theorem 1), and we have

∥
∥diag

(

Pgk

)

g∗∥∥ ≤ 1

γ

√

δTH̄Tdiag
(

Pg∗
k

)

H̄δ. (13)

Incorporating this with (11), we have

∥
∥diag

(

Pgk

)

g∗∥∥ ≤ 1

γ

∥
∥B∗∥∥ 1

2 μ−β̄1 e−ᾱ1(t−t0)‖δ(t0)‖ (14)
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∀t ∈ [t0, t0 + T) and ‖diag(Pgk)g
∗‖ ≡ 0 ∀t ∈ [t0 + T,∞).

Hence, we have
∥
∥
∥
∥

μ̇

μ
diag

(

Pgk

)

g∗
∥
∥
∥
∥

≤ 1

γ

∥
∥B∗∥∥ 1

2
h

T
μ

−
(

β̄1− 1
h

)

e−ᾱ1(t−t0)‖δ(t0)‖
(15)

∀t ∈ [t0, t0 + T), and further by β̄1 − (1/h) > 0 [from (9)],
we have that limt→(t0+T)− ‖(μ̇/μ)diag(Pgk)g

∗‖ = 0 and that
‖(μ̇/μ)diag(Pgk)g

∗‖ ≡ 0 ∀t ∈ [t0 + T,∞). Noting that u =
(a + b[μ̇/μ])H̄Tdiag(Pgk)g

∗ and gk is continuous respect to t,
we can conclude that u is continuous and uniformly bounded
on [t0,∞).

Next, we will show (du/dt) is continuous on [t0,∞). Since

du

dt
= −

(

a + b
μ̇

μ

)

H̄T d
(

diag
(

Pgk

))

dt
g∗

− bh

T2
μ

2
h H̄Tdiag

(

Pgk

)

g∗ (16)

it is clear that (du/dt) is continuous on [t0, t0 + T) and (t0 +
T,∞). From (14), it can be obtained that
∥
∥
∥μ

2
h H̄Tdiag

(

Pgk

)

g∗
∥
∥
∥ ≤ 1

γ

∥
∥B∗∥∥ 1

2 μ
−

(

β̄1− 2
h

)

e−ᾱ1(t−t0)‖δ(t0)‖
(17)

∀t ∈ [t0, t0 + T), and further by β̄1 − (2/h) > 0 [from (9)],
we have that limt→(t0+T)− ‖μ(2/h)diag(Pgk)g

∗‖ = 0 and that
‖μ(2/h)diag(Pgk)g

∗‖ ≡ 0 ∀t ∈ [t0 + T,∞).
For the first term in (16), we have
(

a + b
μ̇

μ

)

H̄T d
(

diag
(

Pgk

))

dt
g∗

=
(

a + b
μ̇

μ

)
∂f (δ)

∂δ
δ̇ =

(

a + bh

T
μ

1
h

)2

FH̄Tdiag
(

Pgk

)

g∗

where F is the Jacobian matrix defined in the proof of
Lemma 4. From Theorem 1, we have ‖eij‖ ≥ γ , and further
due to the definition of Gij and Pgij , we know that ‖[F]ij|δ‖
∀i, j ∈ V is bounded for δ ∈ [0, δ(t0)]. Thus, we can always
define a positive constant κ such that κ = maxδ∈[0,δ(t0)] ‖F|δ‖.

It then follows that:
∥
∥
∥
∥
∥

(

a + bh

T
μ

1
h

)2

FH̄Tdiag
(

Pgk

)

g∗
∥
∥
∥
∥
∥

≤ κ‖H̄‖
(

a2 + 2abh

T
μ

1
h + b2h2

T2
μ

2
h

)
∥
∥diag

(

Pgk

)

g∗∥∥.

By using the fact β̄1 − (2/h) > 0, following similar analysis
for (15) and (17), it is clear that limt→(t0+T)− ‖(du/dt)‖ = 0
∀t ∈ [t0, t0 + T) and ‖(du/dt)‖ ≡ 0 ∀t ∈ [t0 + T,∞). Hence,
we can conclude that (du/dt) is continuous on [t0,∞), and
furthermore the control input u is C1 smooth and uniformly
bounded over the time interval [t0,∞).

Remark 4: Noting that δ = −2r∗ is an unstable equilib-
rium of closed-loop system (6), Theorem 2 guarantees almost
global formation stabilization excepting the case δ(t0) = −2r∗.
Furthermore, the invariance of scale and centroid is used such
that the formation control problem can be transferred into a
bearing stabilization problem.

Remark 5: It is worth noting that the time-varying gain
(μ̇/μ) plays an important role in achieving the formation con-
trol in finite time. From (15), we can see that the control gain
(μ̇/μ) goes to infinite when t → t0 + T . However, the control
input u remains bounded and C1 smooth. Equations (12) and
(13) build the connection between ‖u‖ and ‖δ‖. Intuitively,
condition (9) guarantees a sufficiently large b such that the
decrease of ‖δ‖ is faster than the increase of (μ̇/μ). Different
from the fractional power-based finite-time control law in [8],
[21], and [32], the converge time of control law (2) does not
depend on the initial condition and can be any value specified
by users.

IV. BEARING-ONLY LEADER–FOLLOWER

FORMATION CONTROL

To guarantee the convergence, Theorem 2 requires p̄(t0) =
p̄∗ and s(t0) = s∗, which may not be easily satisfied when the
system has a large number of agents. In this section, we will
show that these requirements can be relaxed and the global sta-
bilization can be achieved by using a leader–follower control
structure.

Without loss of generality, suppose the first nl ≥ 2 agents
are leaders and the remaining nf = n−nl agents are followers.
Let Vl = {1, . . . , nl} and Vf = {nl + 1, . . . , n} be the set of
leaders and followers, respectively. The positions of agents
are denoted as p = col(pl, pf ), where pl = col(p1, . . . , pnl)

and pf = col(pnl+1, . . . , pn) are the positions of leaders and
followers, respectively. The leader–follower formation control
problem is given as follows.

Problem 2: With leader positions {p∗
i }i∈Vl , design control

input for agent i ∈ Vf based on the bearing vectors {gij(t)}j∈Ni

such that p → p∗ for t → t0 + T , and p = p∗ for t ≥
t0 + T , where p∗ is a target configuration and T ∈ R>0 is the
convergence time prespecified by users.

Since the leaders are stationary, we have ṗi = 0, i ∈ Vl. The
control law of each following mobile agent is designed as:

ui = −
(

a + b
μ̇

μ

)
∑

j∈Ni

Pgijg
∗
ij, i ∈ Vf . (18)

Note that control law (18) is same as (2). In the following, we
will show that control law (18) can achieve global formation
stabilization.

Since δi = pi − p∗
i , we have δ = col(δl, δf ) = col(0dnl , δf ),

where δl = pl − p∗
l and δf = pf − p∗

f . By (18), the dynamics
of δ can be written in a compact form as

δ̇ =
(

a + b
μ̇

μ

)[
0dnl×dnl 0dnl×dnf

0dnf ×dnl Idnf

]

H̄Tdiag
(

Pgk

)

g∗.

Theorem 3: Under Assumption 1 and control law (18),
the interagent distances are also lower bounded by γ , if
condition (7) is satisfied.

Proof: Here, we just need to prove that ‖δ‖ is upper bounded
by ‖δ(t0)‖, for t > t0 and the remaining proof follows similarly
as in Theorem 1. Noting that V = (1/2)δTδ, the time derivative
of V is given as

V̇ =
(

a + b
μ̇

μ

)

δT
[

0dnl×dnl 0dnl×dnf

0dnf ×dnl Idnf

]

H̄Tdiag
(

Pgk

)

g∗
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= −
(

a + b
μ̇

μ

)

δTH̄Tdiag
(

Pgk

)

g∗

= −
(

a + b
μ̇

μ

) m
∑

k=1

∥
∥e∗

k

∥
∥
(

g∗
k

)T
Pgk g∗

k ≤ 0 (19)

where we have used the fact that δl = 0. It follows that
‖δ(t)‖ ≤ ‖δ(t0)‖ ∀t ≥ t0.

Remark 6: Theorem 3 implies that although the state tra-
jectory in the leader–follower case is different with leaderless
case, the conditions for collision avoidance are same. Fixing
arbitrary number of agents on the target position will not
change V̇ , hence the condition for the collision avoidance is
not related to the number of leaders.

Theorem 4: Under Assumption 1, Problem 2 is solved by
control law (18) if condition (7) is satisfied and

bhλmin

(

B∗
ff

)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

> 2‖H̄‖2(‖δ(t0)‖ + √
ns∗)2

(20)

where λmin(B∗
ff ) is the smallest eigenvalue of B∗

ff . Furthermore,
‖pi(t) − pj(t)‖ > γ ∀i, j ∈ V , and the control input uf =
col(unl+1, . . . , un) remains C1 smooth and uniformly bounded
over the time interval [t0,∞).

Proof: By (18) and following the analysis for (10), we have:

V̇ ≤ −
(

a + b
μ̇

μ

) mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

maxi,j∈V,i �=j
∥
∥pi − pj

∥
∥2

δTH̄Tdiag
(

Pg∗
k

)

H̄δ

= −
(

a + b
μ̇

μ

) mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

maxi,j∈V,i �=j‖pi − pj‖2
δTB∗δ. (21)

Due to the fact that

δTB∗δ =
[

0T δT
f

]
[ B∗

ll B∗
lf

(

B∗
lf

)T B∗
ff

]
[

0T δT
f

]T

and in light of Lemma 1 3), we know that B∗
ff > 0 and further

that δTB∗δ ≥ λmin(B∗
ff )δ

Tδ.
Different from the leaderless case, for the leader–follower

case, the invariance of the centroid p̄ and the scale s is no
longer hold. Alternatively, the following inequalities are used
to characterize the upper bound of maxi,j∈V,i �=j‖pi − pj‖2:

maxi,j∈V,i �=j
∥
∥pi − pj

∥
∥2 ≤ ‖e‖2 = ∥

∥H̄
(

p − p∗ + p∗)∥∥2

= ∥
∥H̄

(

δ + r∗)∥∥2

≤ ‖H̄‖2(‖δ(t0)‖ + √
ns∗)2

(22)

where we have used the facts ‖δ(t)‖ ≤ ‖δ(t0)‖, H̄(p∗ − (1n ⊗
p̄∗)) = H̄p∗, and ‖r∗‖ = √

ns∗ to obtain the last inequality. It
then follows from (21) and (22) that:

V̇ ≤ −
aλmin

(

B∗
ff

)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

∥
∥H̄

∥
∥

2(‖δ(t0)‖ + √
ns∗)2

︸ ︷︷ ︸

ᾱ2

‖δ(t)‖2

−
bλmin

(

B∗
ff

)

mini,j∈V,i �=j

∥
∥
∥p∗

i − p∗
j

∥
∥
∥

‖H̄‖2
(‖δ(t0)‖ + √

ns∗)2

︸ ︷︷ ︸

β̄2

μ̇

μ
‖δ(t)‖2

= −2ᾱ2V − 2β̄2
μ̇

μ
V.

(a)

(b)

(c)

Fig. 3. Simulation results of control law (2). (a) Initial positions pi(0) ∀i =
1, . . . , 8. (b) Trajectories and positions pi at 4 s ∀i = 1, . . . , 8. (c) Minimum
distance between agents mini,j∈V,i�=j‖pi − pj‖.

In light of Lemma 2, we have

‖δ(t)‖
{≤ μ−β̄2 e−ᾱ2(t−t0)‖δ(t0)‖, t ∈ [t0, t0 + T)

≡ 0, t ∈ [t0 + T,∞)

which implies that p converges to p∗ in a user prespecified
finite time T . Note that

‖uf ‖ =
∥
∥
∥
∥

[
0dnl×dnl 0dnl×dnf

0dnf ×dnl Idnf

]

H̄Tdiag
(

Pgk

)

g∗
∥
∥
∥
∥

≤ ‖H̄‖∥∥diag
(

Pgk

)

g∗∥∥.

Following the similar analysis in Theorem 2, it can be proved
that uf is C1 smooth and uniformly bounded over the time
interval [t0,∞).

Authorized licensed use limited to: Westlake University. Downloaded on March 14,2022 at 08:04:05 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: BEARING-ONLY FORMATION CONTROL WITH PRESPECIFIED CONVERGENCE TIME 627

(a)

(b)

Fig. 4. Simulation results of control law (2). (a) Position error ‖p − p∗‖.
(b) Norm of control input ‖ui‖ ∀i = 1, . . . , 8.

Remark 7: Any positive a and b can guarantee V̇ ≤ 0.
Conditions (9) and (20) are required to guarantee the bound-
ness and the smoothness of the control input.

Remark 8: In the leader–follower case, the initial require-
ments p̄(t0) = p̄∗ and s(t0) = s∗ are removed. Intuitively,
due to nl ≥ 2, at least two points and the edge between
these two points are fixed. Since these two points and the
edge can determine the translation and scaling of the target
formation, together with the fact that the target formation is
infinitesimally bearing rigid, the target formation is uniquely
determined. Furthermore, since we have δl = 0, the system
will not start from the initial condition δ(t0) = −2r∗. Hence,
the global stability can be achieved.

V. SIMULATION EXAMPLE

To validate the effectiveness of control law (2), we show an
example of eight agents with a cubic target formation. The ini-
tial positions are chosen to satisfy the conditions in Theorem 2
and the parameters are set as follows: a = 0.2, b = 5, h = 5,
and T = 4 s.

The initial positions and the positions at 4 s are shown in
Fig. 3(a) and (b). The vertices in different color are the agents
and the solid lines are trajectories of the agents. The dashed
lines in gray and the plus sign in black represent the relative
bearing and the centroid p̄, respectively. We can observe that
the centroid is invariant. Fig. 3(c) shows that the minimum
distance between agents is larger than 0.5. Hence, there is
no collision between agents. Together with Fig. 4(a), we can
see that the target formation is achieved at 4 s. Furthermore,
Fig. 4(b) shows that the control inputs ui ∀i = 1, . . . , 8 are
bounded and smooth.

Fig. 5. Experimental platform.

Fig. 6. Target formation with two leaders L1 and L2.

VI. EXPERIMENTAL VALIDATION

To demonstrate the performance of control law (18), we
design an experimental platform with self-fabricated mobile
robots shown in Fig. 5. In this platform, a VICON motion
capture system with 6 Vero X cameras is used to obtain the
position of mobile robots. A Linux-based host computer (CPU
2.7-GHz, 4-GB RAM) is used to transfer the position data
into the relative bearings, package the relative bearings into
robot operating system (ROS) topics, and broadcast the topics
through Wi-Fi. To simulate a distributed sensor network, each
robot only subscribes the topics of neighboring robots. The
mobile robot is mainly composed of three levels.

1) Mona robot [33] based on Arduino Pro Mini (designed
by the University of Manchester).

2) LiPo SHIM + Raspberry Pi Zero [running control
law (18) and subscribing ROS topics at 80 Hz].

3) 14-mm pearl markers (forming unique patterns for
motion capture).

In this experiment, the target formation of six robots is given
in Fig. 6 and the parameters are set as a = 0.12, b = 0.3,
h = 2, and T = 35 s. It is worth noting that the noise intro-
duced by the motion capture system is inevitable and may
result in an unbounded (μ̇/μ)

∑

j∈Ni
Pgijg

∗
ij [with (μ̇/μ) grow-

ing unbounded, while
∑

j∈Ni
Pgijg

∗
ij not decaying to zero]. To

address this issue, inspired by [27], we set T in μ on [t0, t0+T)
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(a)

(b)

(c)

Fig. 7. Experimental results of control law (18). (a) Trajectories and final
configuration. (b) Position error ‖p − p∗‖. (c) Norm of control input ‖ui‖
∀i ∈ Vf .

to a value T̄ slightly larger than the user prespecified settling
time, that is

μ(t) = T̄h

(

t0 + T̄ − t
)h

, t ∈ [t0, t0 + T) (23)

where T̄ = 35.4 s > T . The dynamics of robots are described
as unicycle [8]. To implement control law (18), we linearize
the dynamics of robots by following the steps in [8]. (Please
refer to [8] for details.)

The experimental results are shown in Fig. 7. Fig. 7(a) is
plotted against an image taken by the downward-looking cam-
era on the ceiling. Together with Fig. 7(b), we can see that
the target configuration is achieved at 35 s and there is no
collision between robots. Furthermore, the control inputs ui of
followers are bounded as shown in Fig. 7(c).

VII. CONCLUSION

This article proposes new bearing-only control laws to
achieve target formations in finite time. The almost global
convergence is guaranteed. Furthermore, the convergence time
is not related to initial conditions and can be arbitrarily cho-
sen by users. Sufficient conditions for collision avoidance are
also given. Then, the almost global convergence is extended to
global convergence by using a leader–follower control struc-
ture. Since no signum function or fractional power feedback
is used, the control action of the proposed control laws is
C1 smooth. The simulation and experimental results both
demonstrate the effectiveness of our design.
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