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Life Beyond Distance Rigidity

Bearing Rigidity Theory and 
Its Applications for Control 
and Estimation  
of Network Systems

D
istributed control and location estimation of mul-
tiagent systems have received tremendous re-
search attention in recent years because of their 
potential across many application domains [1], 
[2]. The term agent can represent a sensor, autono-

mous vehicle, or any general dynamical system. Multiagent 
systems are attractive because of their robustness against 
system failure, ability to adapt to dynamic and uncertain 
environments, and economic advantages compared to the 
implementation of more expensive monolithic systems.

Formation control and network localization are two funda-
mental tasks for multiagent systems that enable them to per-
form complex missions. The goal of formation control is to 
direct each agent using local information from neighboring 
agents so that the entire team forms a desired spatial geomet-
ric pattern (see [2] for a recent survey on formation control). 
While the notion of a formation as a geometric pattern has a 
natural meaning for robotic systems, it may also correspond to 
more abstract configurations for the system state of a team of 
agents. The goal of network localization is to estimate the loca-
tion of each agent in a network using locally sensed or com-
municated information from neighboring agents [3]–[6]. 
Network localization is usually the first step that must be com-
pleted before a sensor network provides other services, such as 
positioning mobile robots or monitoring areas of interest.

For a formation control or network localization task, the 
type of information available to each agent is an important 

factor that determines the design of the corresponding control 
or estimation algorithms. Most of the existing approaches for 
formation control assume that each agent can obtain the rela-
tive positions of its nearest neighbors. To obtain these in prac-
tice, each agent can measure its own absolute position using a 
GPS, for example, and then share it with neighbors via wire-
less communications. This method is, however, not applicable 
when operating in GPS-denied environments, such as 
indoors, underwater, or in deep space. Furthermore, the abso-
lute accuracy of the GPS may not meet the requirements of 
high-accuracy formation control tasks. Rather than relying on 
external positioning systems like the GPS, each agent can use 
onboard sensors to sense their neighbors.

Optical cameras are widely used onboard sensors for 
ground and aerial vehicles to achieve various sensing tasks 
because of their low-cost, lightweight, and low-power char-
acteristics. It is notable that optical cameras are inherently 
bearing-only sensors. Specifically, once a target has been 
recognized in an image, its bearing relative to the camera 
can be calculated immediately from its pixel coordinate 
based on the pinhole camera model [7, Sec. 3.3]. 

As a comparison, the range from the target to the camera 
is more complicated to obtain because it requires additional 
geometric information about the target and extra estima-
tion algorithms, which may significantly increase the com-
plexity of the vision-sensing system. Although stereo cameras 
can be used to estimate the range of a target by triangulat-
ing the target’s bearings [8], the estimation accuracy degen-
erates rapidly as the range of the target increases because of 
the short baseline between the two cameras. 
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Since it is easy for vision to measure bearings (but rela-
tively difficult to obtain accurate range information), vision 
can be effectively modeled as a bearing-only sensing approach 
in multiagent formation control [9], [10]. In addition to cam-
eras, other types of sensors, such as passive radars, passive 
sonars, and sensor arrays, are able to measure relative bear-
ings [5], [11], [12].

When each agent is able to access only the bearings rel-
ative to their neighbors, two strategies can be adopted to 
achieve formation control or network localization. The first 
uses bearings to estimate relative positions. This strategy 
leads to coupled control and estimation problems whose 
global stability is difficult to prove (see, for example, [13]). 
Moreover, the estimation of relative positions depends on 
an observability condition requiring the relative motion of 
each pair of neighboring agents to satisfy certain condi-
tions [14]. Although this observability condition can be 
achieved in certain applications (such as bearing-only 
circumnavigation [15]–[18]), it is difficult to satisfy in gen-
eral formation control tasks where all agents are sup-
posed to form a target formation with no relative motions 
among the agents. This observability condition is also 
not satisfied in network localization because all of the sen-
sors are stationary. 

The second strategy, which is the focus of this article, is 
to directly apply bearings in formation control or network 
localization without estimating relative positions. This 
strategy does not require relative position estimation but 
instead calls for designing new control and estimation 
algorithms that utilize only bearing measurements.

As discussed in “Summary,” the purpose of this article is 
to provide a tutorial overview of recent advances in the area 
of bearing-based formation control and network localization. 
The first problem addressed here is to understand when for-
mation control or network localization problems can be solved 
using only interneighbor bearing measurements. 

Summary

The problem of distributed control and estimation for 

multiagent systems with limited sensing capabilities is a 

practical challenge motivated by incomplete and imperfect 

sensing. This article addresses an important case where 

each agent in a network can sense only the relative bear-

ings to their nearest neighbors. The study of this topic is 

motivated mainly by the rapid development of bearing-only 

sensors, such as optical cameras and sensor arrays. This 

article provides a tutorial review on this topic, focusing on 

the problems of formation control and network localization. 

A key component of this review is a presentation of the re-

cently developed bearing rigidity theory, which defines a 

necessary architectural feature of multiagent systems aim-

ing to solve these two problems. This article presents a 

high-level summary of recently developed algorithms solv-

ing these problems, various simulation examples, and dis-

cussions pointing to the relevant literature and important 

remaining challenges in this area.

Any distributed control or estimation task requires certain 
fundamental architectural conditions of the multiagent 
system. For example, in consensus problems, a network must 
possess a spanning tree to ensure that the states of different 
agents converge to the same value [19]–[22]. For bearing-based 
formation control and network localization, there is also an 
architectural requirement to solve these problems, known as 
bearing rigidity. Bearing rigidity theory, also called parallel 
rigidity theory in the literature, was originally introduced for 
computer-aided design [23] and has received increasing atten-
tion in recent years because of its important applications in 
bearing-based control and estimation problems [24]–[28]. 
Bearing rigidity theory investigates the conditions where the 
geometric pattern of a network is uniquely determined if the 
bearing of each edge in the network is fixed.

Bearing rigidity theory can be interpreted as a theory 
analogous to the classic rigidity theory based on interneigh-
bor distances, which is referred to as distance rigidity theory in 
this article. Classic distance rigidity theory studies the condi-
tions where the geometric pattern of a network is uniquely 
determined if the length (distance) of each edge in the net-
work is fixed. It is a combinatorial theory for characterizing 
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the stiffness or flexibility of structures formed by rigid bodies 
connected by flexible linkages or hinges. The study of 
distance rigidity has a long history as a formal mathematical 
discipline [29]–[36]. In recent years, it has played a fundamen-
tal role in distance-based formation control [37]–[45] and 
distance-based network localization [4], [5], [46]. One goal of 
this article is to compare the distance and bearing rigidity 
theories by highlighting their similarities and differences.

This article addresses three important applications of the 
bearing rigidity theory in the area of the distributed control 
and estimation of multiagent systems, briefly described  
as follows.

»» Bearing-based network localization: Consider a network 
of stationary nodes where only a subset of the nodes 
know their own absolute positions. These special 
nodes are referred to as anchors while the others are 
followers. Suppose each follower node is able to mea-
sure the relative bearings of its neighbors and share 
the estimates of its own position with its neighbors by 
wireless communication. The aim of bearing-based 
network localization is to localize the follower nodes 
using the bearing measurements and the anchors’ 
absolute positions [6], [47]–[52]. Here, the network 
localization problem may also be called network self-
localization, which is usually the first step for a sensor 
network to provide other services, such as positioning 
or monitoring. Network localization is essential for 
sensor networks in environments where GPS signals 
are not available, reliable, or sufficiently accurate.

»» Bearing-based formation control: Consider a group of 
mobile agents where each agent is able to obtain the rela-
tive positions of its neighbors. The aim of bearing-based 
formation control is to steer the agents from some initial 
spatial configuration to a target formation with a desired 
geometric pattern predefined by interneighbor bearings 
[24], [53]–[56]. Since the target formation is invariant in 

terms of scaling variations, bearing-based formation 
control provides a simple solution for formation scale 
control, which is a practically useful technique to adjust 
the scale of a formation so that the agents can dynami-
cally respond to the environment to achieve, for example, 
obstacle avoidance, such as passing through narrow pas-
sages [57], [58]. Note that the bearing-based formation 
control problem is dual with respect to the bearing-based 
network localization problem. When the agent dynamics 
are modeled as single integrators and the leaders are sta-
tionary, the two problems are indeed identical. However, 
this article also considers a broader range of cases in the 
formation control problem, namely, formation maneu-
vering using leaders and different models for the agent 
dynamics, including double integrators and unicycles.

»» Bearing-only formation control: The aim of bearing-only 
formation control is to steer a group of mobile agents 
to form a desired geometric pattern predefined by 
interneighbor bearings. Unlike bearing-based forma-
tion control, bearing-only formation control requires 
each agent only to measure the relative bearings of its 
neighbors, whereas relative positions are not required 
to be measured or estimated [10], [25], [59]–[65]. Bear-
ing-only formation control provides a novel frame-
work for implementing vision-based formation control 
tasks, where vision may be modeled as a bearing-only 
sensing approach. It also suggests that distance infor-
mation may be redundant for achieving certain forma-
tion control tasks.

The notations for the networks and formations used 
throughout this article are given in “Notation for Networks 
and Formations.”

BEARING RIGIDITY THEORY
Bearing rigidity theory studies the conditions where the geo-
metric pattern of a network can be uniquely determined if the 

Notation for Networks and Formations

Given a network of n nodes in ,Rd  where , ,n d2 2$ $  let the 

position of node i  be p Ri
d!  and the configuration of the 

points be , , .p p p RT
n
T T dn

1 f !=6 @  The interaction among the 

nodes is described by a graph ( , )VG E=  that consists of a ver-

tex set , , n1V f=" , and an edge set .VE V #3  If ( , ) ,i j E!  

then node i  receives information from node ,j  and node j  is 

adjacent to .i  The set of neighbors of vertex i  is denoted as 

: , .j i jN V Ei ! != ^ h" ,  This article focuses on undirected 

graphs, where , , .i j ij EE+! !^ ^h h
Let m  be the number of undirected edges in the graph. An 

orientation of an undirected graph is the assignment of a direc-

tion to each edge. An oriented graph is an undirected graph 

together with an orientation. The incidence matrix H Rm n! #  

of an oriented graph is the { , }0 1!  matrix, with rows indexed by 

edges and columns by vertices.

A network, denoted as ( , ),pG  is G with its vertex i V!  mapped 

to .pi  A network may be called a formation in the context of formation 

control. For a network ( , ),pG  define the edge and bearing vectors for 

( , )i j E!  as e p pij j i= -  and ,g e eij ij ij=  respectively. Here gij  is 

the unit vector pointing from pi  to pj  that represents the relative bear-

ing of pi  with respect to .pj  Note that e eij ji=-  and .g gij ji=-  Con-

sider an orientation of the graph G and suppose ( , )i j  corresponds to 

the kth edge in the oriented graph. Then the edge and bearing vec-

tors may be expressed as e p pk j i= -  and ,g e ek k k=  where 

{ , , } .k m1 f!  Let , ,e e eT
m
T T

1 f=6 @  and , , .g g gT
m
T T

1 f=6 @  Note 

that ( ) ,e H I pd7=  where 7 denotes the Kronecker product. In this 

article, Null ( )$  and ( )Range $  denote the null and range spaces of 

a matrix, respectively. Denote , , .1 11 Rn
T nf_ !6 @  Let $  be the  

Euclidian norm of a vector or the spectral norm of a matrix and 

I Rd
d d! #  the identity matrix.
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bearing of each edge in the network is fixed. Equivalently 
stated, bearing rigidity studies the conditions where two net-
works have the same geometric pattern if they have the same 
bearings. To illustrate this idea, the two networks in Figure 1(a) 
have the same bearings but different geometric patterns. As a 
result, they are not bearing rigid. The two networks in 
Figure  1(b) have the same bearings and geometric pattern 
(modulo a scaling and translational factor). The two networks 
can be shown to be bearing rigid, and the rigorous proof of 
this result relies on the theory presented in this section.

There are three different notions of bearing rigidity: bear-
ing, global bearing, and infinitesimal bearing. The first two 
are not of practical interest because they cannot ensure 
unique geometric patterns of networks. The third, infinitesi-
mal bearing rigidity, is the most important. Its properties are 
discussed in detail in this section. The precise definitions of 
the three types of bearing rigidity are given in “Key Defini-
tions in Bearing Rigidity Theory.” These definitions are anal-
ogous to those in the distance rigidity theory, which are listed 
in “Key Definitions in Distance Rigidity Theory” for the pur-
pose of comparison. It is worth noting that an orthogonal 
projection matrix plays a key role in bearing rigidity theory. 
The properties of the projection matrix are summarized in 
“An Orthogonal Projection Matrix.” Moreover, a bearing 
(which is represented by a unit vector) must be expressed in 
a specific reference frame. In this article, the bearings in a 
network are all expressed in a common reference frame.

Properties of Infinitesimal Bearing Rigidity
Infinitesimal bearing rigidity has two key properties. The 
first is a geometric property [28, Th. 6], namely, that the posi-
tions of the nodes in a network can be uniquely determined 
up to a translational and scaling factor by the bearings if and 
only if the network is infinitesimally bearing rigid. The 
second is an algebraic property [28, Th. 4]: a network is infin-
itesimally bearing rigid in the d-dimensional space if and 
only if the bearing rigidity matrix RB  satisfies

	 ( ) { , },R I p1Null spanB n d7= � (1)

or, equivalently,

	 ( ) .R dn d 1rank B = - - � (2)

The definition of the bearing rigidity matrix RB  is given in 
“Key Definitions in Bearing Rigidity Theory.” Because of 
the aforementioned two properties, infinitesimal bearing 
rigidity not only ensures the unique geometric pattern of a 
network but can be conveniently examined by a mathemati-
cal condition. Examples of infinitesimally bearing-rigid net-
works are given in Figure 2.

The notion of infinitesimal bearing rigidity is defined 
based on the bearing rigidity matrix. The term infinitesimal 
is due to the fact that the bearing rigidity matrix is the first-
order derivative (the Jacobian) of the bearing vectors with 

respect to the positions of the nodes. It must be noted that 
infinitesimal bearing rigidity is a global property in the 
sense that the bearings can uniquely determine the geo-
metric pattern of a network. The term infinitesimal may be 
removed in this article when the context is clear.

An infinitesimal bearing motion of a network is a 
motion of some nodes that preserves all of the bearings. All 
of the infinitesimal bearing motions of a network form the 
null space of the bearing rigidity matrix. There are two 
types of trivial infinitesimal bearing motions: the transla-
tional and scaling motions of the entire network. These two 
types of trivial motions correspond to the vectors in 

.{ , }I p1span n d7  As a result, the rank condition in (1) means 
that a network is infinitesimally bearing rigid if and only if 
all of the infinitesimal bearing motions are trivial. This 
provides an intuitive way to examine bearing rigidity. For 
example, the networks in Figure 3 are not bearing rigid 
because they have nontrivial infinitesimal bearing motions.

An alternative necessary and sufficient condition for 
infinitesimal bearing rigidity is based on a special matrix 
termed the bearing Laplacian [66]. The bearing Laplacian of a 
network can be viewed as a weighted graph Laplacian 
matrix with weights that are matrices [67]; thus, the bearing 
Laplacian describes not only the topological structure of 
the network but the values of the edge bearings. The defini-
tion and properties of the bearing Laplacian are summa-
rized in “Bearing Laplacian of Networks.” For a network 
with an undirected graph, the bearing Laplacian has the 
same rank and null space as the bearing rigidity matrix [66, 
Lemma 2]. It then follows from (1) and (2) that a network is 
infinitesimally bearing rigid if and only if

	 ( ) { , },I p1Null spanB n d7= � (3)

or, equivalently,

	 ( ) .dn d 1rank B = - - � (4)

Compared to the bearing rigidity matrix, the bearing Lapla-
cian is more convenient to use because it is symmetric and 
positive semidefinite for undirected graphs. When the under-
lying graph is directed, the bearing Laplacian and the 

(a) (b)

FIGURE 1 An illustration of bearing rigidity. (a) The networks are not 
bearing rigid because the same interneighbor bearings may lead 
to different geometric patterns of the networks (for example, a 
square on the left and a rectangle on the right). (b) The networks 
are bearing rigid because the same interneighbor bearings imply 
the same geometric pattern, although the networks may differ in 
terms of translation and scale.
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Key Definitions in Bearing Rigidity Theory

Definition S1 (Bearing Equivalency) 

Two networks ( , )pG  and ( , )pG l  are bearing equivalent if 

( )P p p 0( )p p i ji j - =- l l  for all ( , ) .i j E!

Definition S2 (Bearing Congruency)

Two networks ( , )pG  and ( , )pG l  are bearing congruent if 

( )P p p 0( )p p i ji j - =- l l  for all , .i j V!

Definition S3 (Bearing Rigidity)

A network ( , )pG  is bearing rigid if there exists a constant 02e  

such that any network ( , )pG l  that is bearing equivalent to ( , )pG  

and satisfies p p 1 e-l  is also bearing congruent to ( , ) .pG

Definition S4 (Global Bearing Rigidity)

A network ( , )pG  is globally bearing rigid if an arbitrary 

network that is bearing equivalent to ( , )pG  is also bearing 

congruent to ( , ) .pG

Consider an oriented graph where the interneighbor 

bearings can be expressed by { } .gk k
m

1=  Define the bearing 

function :F R Rdn dm
B "  as

( ) , , .F p g g RT
m
T T dm

1B f !=6 @

The bearing rigidity matrix is defined as the Jacobian of the 

bearing function

	 ( )
( )

.R p p
F p

Rdm dn
B

B

2
2

!= # � (S1)

A matrix-vector form ( )R pB  is

( ) , , .R p P e P e H Idiag mg g d1B m1 7f= ^ ^h h

Let p Rdn!d  be a variation of the configuration .p  If 

( ) ,R p p 0B d =  then pd  is an infinitesimal bearing motion of 

( , ) .pG  An infinitesimal bearing motion is trivial if it corre-

sponds only to a translation and a scaling of the entire network.

Definition S5 (Infinitesimal Bearing Rigidity)

A network is infinitesimally bearing rigid if all the infinitesi-

mal bearing motions are trivial.

The relation between bearing rigidity, global bearing ri-

gidity, and infinitesimal bearing rigidity is illustrated in Fig-

ure S1. Details of these notions can be found in [28].

Infinitesimal
Bearing Rigidity

Bearing Rigidity
Global

Bearing Rigidity

FIGURE S1 The relation between bearing rigidity, global bearing 
rigidity, and infinitesimal bearing rigidity. Infinitesimal bearing 
rigidity implies both bearing rigidity and global bearing rigidity. 
Global bearing rigidity and bearing rigidity imply each other.

Key Definitions in Distance Rigidity Theory

Definition S6 (Distance Equivalency)

Two networks ( , )pG  and ( , )pG l  are distance equivalent 

if p p p pi j i j- = -  for all ( , ) .i j E!

Definition S7 (Distance Congruency)

Two networks ( , )pG  and ( , )pG l  are distance congru-

ent if p p p pi j i j- = -  for all , .i j V!

Definition S8 (Distance Rigidity)

A network ( , )pG  is distance rigid if there exists a constant 02e  

such that any network ( , )pG l  that is distance equivalent to ( , )pG  

and satisfies p p 1 e-l  is also distance congruent to ( , ) .pG

Definition S9 (Global Distance Rigidity)

A network ( , )pG  is globally distance rigid if an arbitrary 

network that is distance equivalent to ( , )pG  is also dis-

tance congruent to it.

Consider an oriented graph, where the interneighbor 

distances can be expressed by .ek k
m

1=" ,  Define the dis-

tance function :F R Rdn dm
D "  as

( ) , , .F p e e 2 Rm
T m

1
2 2

D f !=6 @

The distance rigidity matrix is defined as the Jacobian of 

the distance function

	 ( )
( )

.R p p
F p

Rm dnD

2
2

!= #
D � (S2)

A matrix-vector form ( )R pD  is

( ) ( , , ) ( ) .R p e e H Idiag T
m
T

d1D 7f=

Let p Rdn!d  be a variation of the configuration .p  If ( )R p pD d = 

,0  then pd  is an infinitesimal distance motion of ( , ) .pG  An in-

finitesimal distance motion is trivial if it corresponds only to a 

translation and a rotation of the entire network.

Definition S10 (Infinitesimal Distance Rigidity)

A network is infinitesimally distance rigid if all of the infini-

tesimal distance motions are trivial.

The relation between distance rigidity, global distance rigid-

ity, and infinitesimal distance rigidity is illustrated in Figure S2. 

Details of these notions can be found in [29]–[32] and [36].

Infinitesimal
Distance Rigidity

Distance Rigidity Global
Distance Rigidity

FIGURE S2 The relation between distance rigidity, global distance 
rigidity, and infinitesimal distance rigidity. Both infinitesimal and 
global distance rigidity imply distance rigidity. Infinitesimal and 
global distance rigidity do not imply each other.
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bearing rigidity matrix may have different ranks and null 
spaces [68, Th. 4].

Construction of Infinitesimally  
Bearing-Rigid Networks
The previous discussion provided an overview of the prop-
erties defining a bearing-rigid network. It is also of interest 
to explore how to construct a bearing-rigid network by 
adding well-placed edges and nodes in a network. Although 
a network is jointly characterized by its underlying graph 
and the configuration of the nodes, the infinitesimal bearing 
rigidity of a network is primarily determined by the 

underlying graph rather than its configuration [69, Lemma 2]. 
Given a graph, if there exists at least one configuration such 
that the network is infinitesimally bearing rigid, then for 
almost all configurations, the corresponding networks are 
infinitesimally bearing rigid. Such graphs are called gener-
ically bearing rigid [69]. If a graph is not generically bearing 
rigid, then the corresponding network is not infinitesimally 
bearing rigid for any configurations. As a result, construct-
ing infinitesimally bearing-rigid networks requires the con-
struction of generically bearing-rigid graphs.

One of the best-known methods for rigid graph construc-
tion is the Henneberg construction, originally proposed for 

An Orthogonal Projection Matrix

For any nonzero vector x Rd!  ),(d 2$  define an orthogonal 

projection matrix as

( ) .P x I x
x
x

x Rd

T
d d

< < <
!

<
= - #

For notational simplicity, denote ( ) .P P xx =  The matrix Px  is an 

orthogonal projection matrix that geometrically projects any vec-

tor onto the orthogonal complement of x  (see Figure S3).

Matrix Px  satisfies , ,P P P Px
T

x x x
2= =  and ( ) { } .P xNull spanx =  

This matrix is positive semidefinite, with one eigenvalue equal 

to zero and d 1-  eigenvalues equal to one. Other properties of 

Px  are summarized as follows.

•	 Any two nonzero vectors ,x y Rd!  are parallel if and only if 

P y 0x =  [28, Lemma 1].

•	 Any two unit vectors ,x y Rd!  satisfy x P x y P yT
y

T
x=  [28, 

Lemma 8].

•	 For any nonzero vectors , ,x x Rm
d

1 f !  where ,m 2$

,d 2$  the matrix P Rx
d d

i

m

1 i !
#

=
/  is nonsingular if and only 

if at least two of , ,x xm1 f  are not collinear [69, Lemma 3].

•	 For any nonzero vector ,x R2!  denote x R2!=  as a non-

zero normal vector that satisfies .x x 0T ==  Then,  Px = 

( ) .x x xT 2= = =  The proof follows from the fact that the ma-

trix ,A x xx x R2 2!= #= =8 B  satisfies .A A AA IT T
2= =

•	 For any two nonzero vectors , ,x y Rd!  if [ , ]0!i r  is the 

angle between them so that ,cosxx y yT i=  then 

sinP Px y i- =  [66, Lemma 5]. This property has been 

used to analyze the perturbation of the orthogonal projec-

tion matrix.

•	 If x R3!  is a unit vector, then ,P xx
2=- #6 @  where

x x
x

x

x

x
x

0
0

0
R3

2

3

1

2

1
3 3!=

-

-

-#
#6 >@ H

is the skew-symmetric matrix associated with x  [7, Th. 2.11]. 

This property has been used in [72, eq. (6)].

The orthogonal projection matrix plays an important role in 

bearing rigidity theory and its applications.

0

x

y

Pxy

FIGURE S3 An illustration of the orthogonal projection matrix. 
Given any nonzero , ,x y Rd!  the vector P yx  is the orthogonal 
projection of y  onto the orthogonal complement of .x

(a) (b) (c) (d)

FIGURE 2 Examples of infinitesimally bearing-rigid networks: the 
networks in (a) and (b) are 2D and the networks in (c) and (d) are 
3D. It can be verified that each of these networks satisfies 

( ) .R dn d 1rank B = - -  The networks in (a), (b), and (c) also satisfy 
the Laman condition and can, therefore, be generated using a 
Henneberg construction. Note that the two networks in (c) and (d) 
are infinitesimally bearing rigid but not infinitesimally distance rigid.

(a) (b) (c) (d)

FIGURE 3 Examples of noninfinitesimally bearing-rigid networks. 
The red/solid arrows represent nontrivial infinitesimal bearing 
motions that preserve all of the interneighbor bearings. These net-
works also are not infinitesimally distance rigid because they have 
nontrivial infinitesimal distance motions (see the blue/dotted 
arrows). Note that the infinitesimal distance motions are perpen-
dicular to the infinitesimal bearing motions.
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the distance rigidity theory [34]. A Henneberg construction 
starting from an edge connecting two vertices results in a 
Laman graph [70]. For a tutorial on Laman graphs and Hen-
neberg construction, see “Laman Graphs and Henneberg 
Construction.”

In bearing rigidity theory, all Laman graphs are generi-
cally bearing rigid in arbitrary dimensions [69, Th. 1]. That 
means if the underlying graph of a network is Laman, then 
the network is infinitesimally bearing rigid for almost all 
configurations in an arbitrary dimension. Figure 4 illus-
trates the Henneberg construction procedure for a 3D 
infinitesimally bearing-rigid network whose underlying 
graph is Laman. Note that the Laman condition is merely 
sufficient but not necessary for generic bearing rigidity. A 
counterexample is given in Figure 5, where the graph is 
generically bearing rigid but not Laman. However, for net-
works in the plane, a graph is generically bearing rigid if 
and only if it is Laman [69, Th. 2].

Since a Laman graph has n2 3-  edges, where n  is the 
number of nodes, n2 3-  edges are sufficient to guarantee 
the bearing rigidity of a network in an arbitrary dimen-
sion. For example, every network in Figure 4 is bearing 
rigid in the 3D space and has n2 3-  edges. It must be 
noted that n2 3-  is not the minimum number of edges 
required to ensure bearing rigidity. The counterexample 
given in Figure  5 shows that a graph with fewer than 

n2 3-  edges may be generically bearing rigid in three 
dimensions. It is still an open problem to construct all 

generically bearing-rigid graphs. A comparison between 
the bearing and distance rigidity theories is given in 
“Comparison of Bearing Rigidity and Distance Rigidity.”

BEARING-BASED NETWORK LOCALIZATION
This section introduces the theory of bearing-based network 
localization that addresses two fundamental problems. The 
first is localizability, which describes whether or not a net-
work can be localized. The second problem is how to localize 
a network in a distributed manner if it is localizable.

Consider a network of nodes where the first na  nodes 
are anchors and the remaining n f n n nf a= -^ h nodes are 
followers. Let { , , }n1Va af=  and V V Vf a= \  be the sets 
of anchors and followers, respectively. The true positions of 
the leaders and followers are denoted as [ , , ]p p pa

T
n
T T

1 af=  
and ,[ , , ]p p pf n n

T
n
T T

a f= -  respectively. The aim of network 
localization is to determine the positions of the followers 
{ }pi i V f!  using the edge bearings { }g ( , )ij i j ! f  and the positions 
of the anchors .{ }pi i Va!  All interneighbor bearings are 
expressed in a common reference frame.

Bearing-Based Localizability
Localizing the follower nodes solves for ,pit  the estimate of pi  
for all ,i V f!  obtained from the set of nonlinear equations
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Bearing Laplacian of Networks

G iven the network ( , )pG  with no colocated nodes, define the 

bearing Laplacian RB dn dn! #  as [66]
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where [ ] RB ij
d d! #  is the ijth block of submatrix of .B  The bear-

ing Laplacian can be viewed as a matrix-weighted Laplacian, 

which describes both the underlying graph and the interneigh-

bor bearings of the network. See Figure S4 for an illustration.

For undirected graphs, the bearing Laplacian has the fol-

lowing properties [66, Lemma 2]:

•	 B  is symmetric and positive semidefinite because, for any 

, , ,x x x RT
n
T T dn

1 f !=6 @

( ) ( ) .x x x x P x x2
1 0BT

i j
T

ji
g i j

NV i

ij $= - -
!!

//

•	 ( ) dn d 1rank B # - -  and { , } ( )I p1span Null Bd7 3  for any 

network.

•	 ( ) dn d 1rank B - -=  and ( ) { , }I p1Null spanB d7=  if and 

only if the network is infinitesimally bearing rigid.

In a network with na  anchors and n n nf a= -  followers, the 

bearing Laplacian may be partitioned into

,
B

B

B

B
B

aa

fa

af

ff
=; E

where .RB ff
dn dnf f! #  For any network, B ff  is positive semidefi-

nite and satisfies p pB Bff f fa a=-  [66, Lemma 3]. In the context 

of formation control, the anchors are called leaders and the 

subscript a is replaced by .,

g12

g13

1
g21

g23

2

g32g31

3
Pg12 + Pg13

−Pg12
−Pg13

−Pg21
Pg21 + Pg23

−Pg23

−Pg31
−Pg32

Pg31 + Pg32

B =

FIGURE S4 An example to demonstrate bearing Laplacian. The 
network is the complete graph on three nodes. The bearing 
Laplacian has the same structure as a weighted graph Lapla-
cian matrix [67], with the weights on each edge corresponding 
to the projection matrices .Pgij
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The true location p  of the network is a feasible solution to 
(5). However, there may exist an infinite number of other 
feasible solutions. This leads to the definition of localizabil-
ity. A network ( , )pG  is bearing localizable if the true position 
p  is the unique feasible solution to (5). It can be further 
shown that p  is the unique solution to (5) if and only if p  is 
the unique global minimizer of the least-squares problem 
[66, Lemma 1]

	 ( ) ( ) ,min J p P p p p p2
1 Bg i j

ji

T2

NV
p

ij

i
Rdn

= - =
!!!

t t t t t
t

// � (6)

subject to p pi i=t  for .i Va!  It has been proven that p  is 
the unique minimizer of (6) if and only if the matrix fB f  
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FIGURE 4 An illustration of the Henneberg construction procedure. The 
Henneberg construction consists of two basic operations: vertex addi-
tion and edge splitting. In this example, the procedure is used to gen-
erate an infinitesimally bearing-rigid network in a 3D ambient space. 
At each step, the underlying graph of the network is Laman. Step (a): 
vertex addition; steps (b)–(f): edge splitting.
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FIGURE 5 An example of generically bearing rigid graphs that are 
not Laman. (a) The configuration is in the xy  plane, and the net-
work is not bearing rigid. (b) The configuration is 3D, and the net-
work is bearing rigid. It can be verified that dn d 1rank( )B = - -  
for (b).

Laman Graphs and Henneberg Construction

An undirected graph ( , )G V E=  is called Laman i f 

m n2 3= - , and every subset of k 2$  vertices spans at 

most k2 3-  edges [70]. Laman graphs can be characterized 

by the Henneberg construction, as described below. Given a 

graph ( , ),G V E=  a new graph ( , )G V E=l l l  is formed by add-

ing a new vertex v  to G  and performing one of the following 

two operations:

1)	 Vertex addition: Connect vertex v  to any two exist-

ing vertices , .i j V!  In this case, { }vV V ,=l  and 

{( , ), ( , )}.v i v jE E ,=l  See Figure S5(a) for an illustration.

2)	 Edge splitting: Consider three vertices , ,i j k V!  with 

( , ) .i j E!  Connect vertex v  to , , ,i j k  and delete ( , ).i j  In this 

case, { }vV V ,=l  and {( , ), ( , ), ( , )} {( , )}\ .v i v j v k i jEE ,=l  

See Figure S5(b) for a depiction.

A Henneberg construction starting from an edge con-

necting two vertices leads to a Laman graph [34]–[36]. 

The converse is also true. That is, if a graph is Laman, 

then it can be generated by a Henneberg construction 

[35, Lemma 2]. The underlying graphs of the networks 

in Figure 2(a)–(c) are Laman. Laman graphs play critical 

roles in the construction of distance-rigid and bearing-

rigid networks.

v

i

j
G G

v

i

j

k

(a) (b)

FIGURE S5 The two operations of the Henneberg construction. 
The Henneberg construction can be used to generate all min-
imally infinitesimally distance-rigid graphs in the plane. The 
main goal is to ensure that (a) the vertex-addition operation 
and (b) the edge-splitting operation satisfy the Laman condi-
tion at each step.
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is nonsingular [66, Th. 1]. The definition of fB f  is given 
in “Bearing Laplacian of Networks.” When fB f  is non-
singular, the positions of the followers can be solved as 

f .p pB Bf f fa a
1=-) -t  Examples of bearing-localizable and 

nonlocalizable networks are given in Figures 6 and 7, 
respectively.

While the nonsingularity of fB f  is an algebraic condi-
tion for bearing localizability, it does not provide any sug-
gestion as to what a bearing-localizable network looks 
like. The following conditions can provide more insight 
into bearing-localizable networks. First, a necessary and 
sufficient rigidity condition for bearing localizability is 
that every infinitesimal bearing motion of a network must 
involve at least one anchor [66, Th. 2]. Specifically, if there 
exists a nonzero infinitesimal bearing motion for a net-
work, then there would exist different networks having 
exactly the same bearings as the true network. As a result, 
infinitesimal bearing motions introduce ambiguities in 

Comparison of Bearing Rigidity and Distance Rigidity

Both bearing and distance rigidity theories address the same 

problem of when the geometric pattern of a network can be 

uniquely determined. The difference is that the bearing rigidity 

theory considers interneighbor bearings, whereas the distance 

rigidity theory focuses on interneighbor distances. The term 

unique pattern in bearing rigidity theory means that the location 

of a network can be determined up to a translational and scaling 

factor, while in distance rigidity theory it signifies that the network 

can be determined up to a translational and rotational factor.

One connection between the two rigidity theories is that in-

finitesimal bearing rigidity is equivalent to infinitesimal distance 

rigidity in two dimensions [28, Th. 8]. That is, a network in the 

plane is infinitesimally bearing rigid if and only if it is infinitesi-

mally distance rigid. This equivalence property explains why 

distance rigidity theory could be used to analyze the problems 

of bearing-based network localization or formation control in the 

literature [49], [51], [64]. It also suggests that the infinitesimal dis-

tance rigidity of a network can be examined by its infinitesimal 

bearing rigidity. For example, it may not be straightforward to see 

that the networks in Figure 3(c) and (d) are not infinitesimally dis-

tance rigid. However, it is intuitive to see that they are not infini-

tesimally bearing rigid because there exist nontrivial infinitesimal 

bearing motions. It must be noted that the equivalence cannot be 

generalized to three or higher dimensions. For example, the 3D 

networks shown in Figure 2(c)–(e) are infinitesimally bearing rigid 

but not infinitesimally distance rigid.

Compared to infinitesimal distance rigidity, infinitesimal 

bearing rigidity possesses interesting properties, as follows.

•	 Infinitesimal bearing rigidity not only ensures the unique pat-

tern of a network but also can be easily examined by a rank 

condition. As a comparison, infinitesimal distance rigidity 

may not be able to ensure a unique pattern, although it can 

be examined by a rank condition. 

•	 An infinitesimally bearing-rigid network remains infinitesi-

mally bearing rigid when the dimension is lifted into a high-

er dimension [28, Th. 7]. As a comparison, a network that 

is infinitesimally distance rigid in the plane may be flexible 

in a higher dimension. 

•	 In bearing rigidity theory, a Laman graph is generically bear-

ing rigid in arbitrary dimensions, and at most n2 3-  edges 

would be sufficient to guarantee the bearing rigidity of a net-

work in an arbitrary dimension. As a comparison, although a 

Laman graph embedded in a generic configuration is infini-

tesimally distance rigid [30], [34]–[37], this result (known as 

Laman’s theorem [70]) is valid merely in 2D spaces. In three 

or higher dimensions, extra conditions and more edges are 

required to guarantee distance rigidity.

This comparison is summarized in Table S1.

Why bearing rigidity has appealing properties in high dimen-

sions can be explained from the perspective of degree of freedom. 

For example, consider a network of n nodes in the d-dimensional 

space. The network has dn degrees of freedom. To ensure the 

Anchor
Follower

(a) (b) (c)

(d) (e) (f) (g)

FIGURE 6 Examples of bearing-localizable networks. The networks 
are localizable because B ff  of each network is nonsingular. The 
intuitive interpretation is that every infinitesimal bearing motion 
involves at least one anchor. Note that the networks in (b)–(f) are 
not infinitesimally bearing rigid but are localizable.

(a) (b) (c) (d)

Anchor
Follower

FIGURE 7 Examples of networks that are not bearing localizable. The 
networks are not localizable because B ff  of each network is singular. 
The intuitive interpretation is that the networks have infinitesimal bear-
ing motions that correspond only to the followers (see the red arrows).
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the localization of the true network. When the infinitesi-
mal motion involves at least one anchor, the ambiguities 
can be resolved by the anchors whose positions are 
known, and hence the network location can be uniquely 
determined. This rigidity condition provides an intuitive 
way to examine network localizability (see, for example, 
Figure 7).

The following condition indicates how many anchors are 
required to guarantee bearing localizability. The number of 
anchors in a bearing-localizable network in Rd  must satisfy 
[66, Corollary 1]

	
(

.
dim

n d d
d 1Null B

a $ $ +)^ h
� (7)

Inequality (7) has two important implications. The first is 
that every bearing-localizable network must have at least 
two anchors because ( )/ .d d1 12+  The second is that more 
anchors are required when the degree of bearing rigidity of the 
network is weak. Here, the degree of bearing rigidity [char-
acterized by B( ( )]dim Null )  is strongest if B( ( ))dim Null  
reaches the smallest value of d 1+  (when the network is 
infinitesimally bearing rigid) and weak if its value is greater 
than .d 1+

The following two conditions explicitly address the rela-
tion between bearing localizability and bearing rigidity. 

1)	 A sufficient condition for a network to be bearing 
localizable is that it is infinitesimally bearing rigid 
and has at least two anchors [66, Corollary 3]. If a net-
work is infinitesimally bearing rigid, then it can be 
uniquely determined up to a translation and scaling 
factor. If there are at least two anchors, then the trans-
lational and scaling ambiguity can be eliminated by 
the anchors, and, thus, the entire network can be fully 
determined. It must be noted that infinitesimal bear-
ing rigidity is merely sufficient but not necessary for 
bearing localizability. For example, the networks in 
Figure 6(b)–(f) are bearing localizable but not infini-
tesimally bearing rigid.

2)	 Let ( , )pG  be the augmented network of ( , ),pG  which 
is obtained from ( , )pG  by connecting each pair of 
anchors (see Figure 8 for an illustration). Then, 
another sufficient condition for bearing localizability 
is that network ( , )pG  is bearing localizable if the 
augmented network ( , )pG  is infinitesimally bearing 
rigid and there are at least two anchors [66, Corol-
lary 2]. This condition is more relaxed, as it does not 
require ( , )pG  to be infinitesimally bearing rigid. 

rigidity of the network, there must exist sufficient distance or bear-

ing constraints to reduce the degrees of freedom of the network 

to certain desired values. Given a distance-rigid network, when 

lifted into a higher dimension, the network’s degrees of freedom 

increase while the number of constraints posed by interneighbor 

distance remain the same. To preserve distance rigidity in higher 

dimensions, more distance constraints are required.

As a comparison, when lifted into a higher dimension, the 

number of independent constraints posed by interneighbor 

bearings also increases. For example, a bearing in the plane 

is equivalent to an azimuth angle, whereas a bearing in the 

3D space is equivalent to two bearing angles: azimuth and 

altitude. As a result, the same number of bearings is still able 

to preserve the bearing rigidity of the network.

Infinitesimal Bearing Rigidity (IBR) Infinitesimal Distance Rigidity (IDR) 

Unique geometric 
pattern

Yes, IBR ensures the unique pattern of a 
network. 

No, IDR does not ensure the unique pattern of a 
network (global distance rigidity does). 

Rank condition Yes, IBR corresponds to a rank condition of 
the bearing rigidity matrix.

Yes, IDR corresponds to a rank condition of the 
distance rigidity matrix. 

Invariance to 
dimension 

Yes, a network that is IBR in a lower 
dimension remains IBR in a higher 
dimension. 

No, a network that is IDR in a lower dimension 
may be flexible in a higher dimension. Universal 
distance rigidity is invariant to dimensions. 

Minimum edge 
number 

In an arbitrary dimension, n2 3-  edges are 
sufficient to ensure IBR. Less than n2 3-  
edges may also be sufficient to ensure IBR 
in three or higher dimensions. 

In the plane, n2 3-  is the minimum number of 
edges to ensure IDR. More than n2 3-  edges 
are required to ensure IDR in three or higher 
dimensions. 

Laman graphs In an arbitrary dimension, Laman graphs 
mapped to almost all configurations result in 
IBR networks. 

In the plane, Laman graphs mapped to almost all 
configurations result in IDR networks. A similar 
result does not exist in higher dimensions. 

Table S1 A  comparison of infinitesimal bearing rigidity and infinitesimal distance rigidity.
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When there are more than two anchors, the infini-
tesimal bearing rigidity of ( , )pG  is merely sufficient 
but not necessary for the bearing localizability of 
( , ) .pG  See Figure 6(f) for a counterexample where the 
network is bearing localizable but the augmented 
network is not infinitesimally bearing rigid. When 
there are exactly two anchors, the infinitesimal bear-
ing rigidity of ( , )pG  is both necessary and sufficient 
for the bearing localizability of ( , )pG  [66, Th. 3].

Distributed Localization Protocols
If a network is bearing localizable, then it must be deter-
mined how to localize it in a distributed manner. Suppose 
each node has an initial guess of its own position as ( ) .p 0it  
The objective is to design a distributed protocol to drive 

( )p t pi i"t  for all i V f!  as .t " 3  This objective can be 
achieved by the protocol [66]

	 (( ) ( ) ( )), ,p t P p t p t i V fi g
j

i j
N

ij

i

!=- -
!

to t t/ � (8)

where .P I g gg d ij ij
T

ij = -  Protocol (8) is the gradient-descent 
protocol for the objective function in the least-squares prob-
lem (6). The geometric interpretation of this protocol is illus-
trated in Figure 9. The expression of (8) is similar to the 
well-known linear consensus protocols [19], [21]. The differ-
ence is that the weight for each edge in (8) is an orthogonal 

projection matrix while, in the consensus protocols, the 
weight for each edge is a scalar. This important distinction 
leads to very different properties of the dynamical system. 
The unique structure of the projection matrix is the key fea-
ture that enables (8) to solve the bearing-based network 
localization problem.

The compact matrix form of (8) is

f f( ) ( ) ,p t p t pB Bf f f a a=- -to t

where B  is the bearing Laplacian of the true network. This 
protocol can globally localize the network if and only if the 
network is bearing localizable (that is, if fB f  is nonsingular) 
[66, Th. 4]. Figure 10 shows a simulation example to demon-
strate (8). The impact of measurement noise on bearing-
based network localization was discussed in [66].

gij

−Pgij 
(pi(t ) − pj(t ))

" "
"

pi(t )

"

pj(t )

FIGURE 9 The geometric interpretation of the bearing-based con-
trol law in (8). The term ( )P p pg j iij -t t  is perpendicular to ,gij  and it 
aims to steer agent i such that ( )g tijt  aligns with .gij
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FIGURE 10 A simulation example to demonstrate the localization 
protocol in (8): (a) the initial and final estimates and (b) the local-
ization error ( ) .p t pi i-t  The real network is located on a 3D 
surface. It consists of 210 edges and 64 nodes, four of which are 
anchors. The network is infinitesimally bearing rigid because 

( ) .dn d188 1rank B = = - -  Therefore, the network is localizable, 
since there are more than two anchors. As can be seen, given a 
random initial guess, the localization error of each node con-
verges to zero.

(G, p) (G, p)

Anchor
Follower

(a) (b)

FIGURE 8 An illustration of (a) a network ( , )pG  and (b) its aug-
mented network ( , )pG . The augmented network is obtained from 
( , )pG  by connecting each pair of anchors in ( , ) .pG  Since deleting 
or adding the edge between any pair of anchors only changes 
Baa  but not , ( , )pB Gff  and ( , )pG  have exactly the same ,B ff  and 
hence they have the same localizability properties.
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BEARING-BASED FORMATION CONTROL
This section introduces the theory of bearing-based formation 
control, which studies how to steer a group of agents to achieve 
a bearing-constrained target formation using relative position 
measurements. Consider a group of mobile agents, where the 
first n,  agents are leaders and the remaining n n n nf f = - ,^ h 
agents are followers. Let { , , }n1Vl f= ,  and V V Vf = ,\  be 
the sets of leaders and followers, respectively. The positions of 
the leaders and followers are denoted as [ , , ]p p pT

n
T T

1 f=, ,  and 
[ , , ] ,p p pf n n

T
n
T Tf= - ,  respectively. The target formation is spec-

ified by the constant bearing constraints { }g ( , )ij i j
)

! f  and the 
leader positions { ( )} .p ti i V! ,  The control objective is to govern 
the positions of the followers { ( )}p ti i V f!  such that ( )g t gij ij"

)  
as t " 3 for all ( , ) .i j ! f  All of the bearings are expressed in a 
common reference frame.

Bearing-Based Formation Control of Single Integrators
First, consider the case where the dynamics of each mobile 
agent can be modeled as the single integrator

	 ( ) ( ),p t u ti i=o �

where ( )u ti  is the velocity input to be designed. If the lead-
ers are stationary, then the bearing-based formation control 
problem can be solved by [54]

	 ( ) ( ( ) ( )), ,p t P t p t i V fi g
j

i j
N

ij

i

!=- -
!

) po / � (9)

where .( )P I gg d ij ij
T

ij = - ) )) g  The matrix form of the control 
law is

	 ff( ) ( ) ,p t p t pBBf f f=- - ,,o �

where B  is the bearing Laplacian of the target formation. 
Control law (9) can globally stabilize a target formation if 
and only if the target formation is bearing localizable (that 
is, if ffB  is nonsingular) [54]. Note that control law (9) has 
an expression similar to the network localization protocol 
in (8). In fact, the bearing-based formation control problem 
is mathematically equivalent to the bearing-based network 
localization problem when the target formation is station-
ary and each agent is a single integrator.

If the leaders move at a constant nonzero speed, then (9) 
would yield a constant nonzero tracking error. The track-
ing error may be eliminated using the following propor-
tional–integral control law proposed in [71]

) ( ))dpx x x- ,(p( ) ( ( ) ( )) (p t P k p t p t ki g
j

p i j I i
t

j
0N

ij

i

=- - -
!

)o B8/ # �(10)

where i V f!  and kp  and kI  are constant positive con-
trol gains. The target formation is globally stable under 
the action of control law (10) if and only if it is bearing 
localizable [71].

If the leader velocities are time varying, then (10) would 
fail to ensure zero tracking errors. The time-varying case 
can be handled by the following control law that requires 
velocity feedback:

	 ,( ) ( ( ) ( )) ( )p t K P k p t p t p t i V fi i g
j

p i j j
1

N

ij

i

!=- - -
!

-
) ,o o6 @/ � (11)

where .K Pi j gNi ijR= ! )  The stability of (11) is proven next. 
First, the nonsingularity of Ki  is guaranteed by the bearing 
localizability of the target formation [55, Lemma 3]. Second, 
multiplying Ki  on both sides of (11) yields ,ki p if f=-o  where 

( ( ) ( ))P p t p ti j g i jN *
i ijf R= -!  for .i V f!  It follows that 0i "f  

as t "3  for all ,i V f!  and consequently g gij ij"
)  when the 

network is bearing localizable.
Under the action of (10) and (11), the formation is able to 

perform translational and scaling formation maneuvers. A 
translational maneuver means that all agents move at a 
common velocity, such that the formation translates as a 
rigid body. A scaling maneuver means that the scale of the 
formation, which can be described by the distance from each 
agent to the formation centroid, varies while the geometric 
pattern of the formation is preserved. To achieve the scaling 
maneuver, the leaders need only to adjust the distances 
among them. One merit of the bearing-based control laws is 
that the desired maneuver is known only to the leaders, and 
the followers are not required to access or estimate it.

Bearing-Based Formation Control  
of Double Integrators
Consider the case where the dynamics of each mobile agent 
can be modeled as a double integrator

	
( ) ( ),
( ) ( ),

p t v t

v t u t
i i

i i

=

=

o

o
�

(12)

where ( )u ti  is the acceleration input to be designed. If the 
velocities of the leaders are constant, then the bearing-
based formation control problem can be solved by [55]

	
( ) ( ),
( ) ( ( ) ( )) ( ( ) ( ))

p t v t

v t P k p t p t k v t v t
i i

i g
j

p i j v i j
N

ij

i

=

=- - + -
!

) ,

o

o @6/ � (13)

where i V f!  and ,k kp v  are positive constant control gains. 
Under control law (13), the target formation is globally 
stable if it is bearing localizable.

If the velocities of the leaders are time varying, then the 
following control law requiring acceleration feedback can 
be used to track time-varying target formations [55]:

( ) ( ),
( ) ( ( ) ( )) ( ( ) ( )) ( ) ,

p t v t

v t K P k p t p t k v t v t v t
i i

i i g
j

p i j v i j j
1

N

ij

i

=

= - - - - +
!

-
)

o

o o @6/
� (14)
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where i V f!  and .K Pi j gNi ijR= ! )  The nonsingularity of Ki  
for any i V f!  is guaranteed by the bearing localizability 
of the target formation [55, Lemma 3]. Under (14), the target 
formation is globally stable if and only if it is bearing 

localizable. A simulation example is given in Figure 11 to 
demonstrate (14). In practice, absolute acceleration can be 
measured by each agent using, for example, inertial mea-
surement units and then transmitted to its neighbors by 
wireless communication. Because of measurement errors 
and transmission delays, the acceleration measurement is 
corrupted by errors. However, since the system is linear, 
bounded acceleration errors would cause bounded track-
ing errors. Bearing-based formation control in the pres-
ence of other problems (including input disturbance, 
input saturation, and collision avoidance) was addressed 
in [55].

Bearing-Based Formation Control of Unicycles
Suppose the dynamics of agent i V!  can be described by 
the unicycle model

	
,
,

,

cos
sin

x v

y v

w

i i i

i i i

i i

i

i

i

=

=

=

o

o

o

�
(15)

where [ , ]p x y Ri i i
T 2!=  is the coordinate of agent 

,i Si
1!i  is the heading angle, and v Ri !  and w Ri !  are 

the linear and angular velocities, respectively, to be 
designed. Here, S1  is the 1D manifold on the unit circle. 
The bearing-based formation control law for unicycles 
is [72]
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When there are no leaders, (16) ensures global stability in 
the sense that ( )g tij  converges to either g*

ij  or g*
ij-  as ,t " 3  

given any initial values of ( )p 0i  and ( )0ii  if the target for-
mation is infinitesimally bearing rigid [72]. The final value 
of ii  is not specified in the control law. A simulation exam-
ple is shown in Figure 12.

BEARING-ONLY FORMATION CONTROL
This section introduces the theory of bearing-only forma-
tion control, which studies how to steer a group of agents to 
achieve a bearing-constrained target formation using bear-
ing-only measurements. Suppose the target formation is 
specified by constant bearing constraints { } ,g ( , )ij i j

)
! f  and 

there are no leaders. The control objective is to govern the 
positions of the agents { ( )}p ti i V!  such that ( )g t gij ij"

)  for all 
( , )i j ! f  as .t " 3  All bearings are expressed in a common 
reference frame.

The following nonlinear control law, proposed in [28], 
can be used to solve the bearing-only formation control 
problem:

	 ( ) , ,p t P g i V( )i g t
j

ij
N

ij

i

!=- )

!

o / � (17)
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FIGURE 11 A simulation example to demonstrate the bearing for-
mation maneuvering control law in (14): (a) the generated forma-
tion maneuver trajectory (the dark area represents an obstacle) 
and (b) the total bearing error of the trajectory ( ) .g t g( , )

*
i j ij ijER -!  

The target formation in the example is a 3D cube with two leaders 
and six followers. The translation and scale of the formation can 
continuously vary while the formation pattern is maintained as 
desired. This example demonstrates that formation scale control 
can be used for obstacle avoidance, such as passing through 
narrow passages.
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FIGURE 12 A simulation example to demonstrate the control law in 
(16). In this example, there are four unicycle agents whose initial 
positions and heading angles are chosen randomly. As can be 
seen, the formation converges to the target formation whose 
square geometric pattern is defined by five bearing vectors.
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where .( ) ( )P I g t g t( )g t d ij ij
T

ij = -  The geometric interpreta-
tion of the control law is illustrated in Figure 13. Some 
properties of the control law are highlighted below. 
First, the control of each agent requires only bearing 
measurements and no distance or position estimation. 
Second, the control input of (17) is always bounded as 

( ) ,p t P g N( )i j g t ij iNi ij# R =)
!o  since .P g 1( )g t ijij = =)  

Third, the centroid and scale of the formation are invari-
ant under the control law [28, Th. 9]. Here, the centroid 
is defined as the average position of the agents, and the 
scale as the standard deviation of the distances from the 

agents to the centroid. Simulation examples are given in 
Figures 14 and 15 to demonstrate (17).

Control law (17) is nonlinear and almost globally stable 
if the target formation is infinitesimally bearing rigid [28, 
Th. 11]. The term almost is due to the fact that there are two 
isolated equilibria of the error dynamics: desired and 
undesired. At the desired equilibrium, the bearings are 
equal to the desired values; that is, g gij ij= )  for ( , ) .i j ! f  At 
the undesired equilibrium, the bearings are opposite to 
the desired values; that is, g gij ij=- )  for ( , ) .i j ! f  The for-
mations at the two equilibria have the same centroid and 
scale but opposite bearings. The almost global stability 
means that the formation would converge to the desired 
equilibrium unless the initial formation lies exactly on 
the undesired equilibrium, which can be shown to be an 
unstable one.

pi (t )

pj (t )

−Pgij 
(t )gij
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Pgij 
(t )gij

∗
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gij (t )

FIGURE 13 The geometric interpretation of the bearing-only control 
law in (17). Since the control term P g*

g ijij-  is perpendicular to the 
bearing gij . The control law aims to reduce the bearing error of 

( )g tij  while maintaining the distance between agents i and j.
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FIGURE 14 A simulation example to demonstrate the bearing-only 
formation control law in (17). In this example, the formation has 
two agents and one edge. In the target formation, the bearings are 
in the horizontal direction; that is, [ , ] .g g 1 0* * T

12 21=- =  The initial 
formation (dotted line) does not fulfill the desired bearings. Under 
the control law in (17), the formation converges to the desired one 
(solid line). Note that the velocity of each agent is always perpen-
dicular to the bearing, and hence the two agents move on a circle 
centered at their midpoint. As a result, the centroid and scale of 
the formation are invariant.
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FIGURE 15 A simulation example for the bearing control law in (17) 
in the 3D space: (a) the initial configuration (gray circles) and the 
final desired formation (blue circles) and (b) the plot of the bearing 
error ( ) .g t g( , )

*
i j ij ijER -!  In this example, the formation has 27 

nodes and 62 edges. For the target formation, the rank of the 
bearing rigidity matrix, which equals the rank of the bearing Lapla-
cian matrix, is .n3 4 77- =  As a result, the target formation is 
infinitesimally bearing rigid, and hence the control law (17) is 
almost globally stable. As can be seen, given a random initial con-
figuration, the target formation is achieved and the bearing errors 
converge to zero.
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Control law (17) is a modified gradient-descent control 
law. Consider the following objective function:

	 ( ) .g g g g2
1 1
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/ / �

The objective function is equal to zero if and only if g gij ij= )  
for all ( , ) .i j ! f  The corresponding gradient-descent con-
trol law is
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The 2D version of (18) was first proposed in [24]. This con-
trol law requires both bearing and distance measurements. 
Removing the distance term ( )e tij  in (18) yields the bear-
ing-only formation control law in (17).

An optimization-based approach for bearing-only for-
mation control can be found in [10] and [65], where a bear-
ing-only control law is proposed as

	 (( ) ( ) ), .p t g t g i Vi ij
j

ij
Ni

!= - )

!

o / � (19)

This is a gradient-descent control law with the correspond-
ing objective function as
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Since 2z  contains ,eij 2z  is zero when g gij ij= )  or .e 0ij =  As 
a result, the scale of the formation always decreases under 
the action of control law (19). Simulation shows that this 
control law may steer all agents to the same position, given 
certain initial conditions. To avoid this problem, leaders 
must be introduced [65].

CONCLUSIONS AND FUTURE DIRECTIONS
This article presented a review of bearing rigidity theory 
and its applications in distributed formation control and 
network localization for multiagent systems. Motivated by 
the fact that many existing approaches rely on measure-
ment assumptions that may be difficult to realize under cer-
tain circumstances, this article demonstrated how to utilize 
bearing-only sensors, such as cameras or sensor arrays, to 
solve the problems of formation control and network local-
ization. Three specific problems were discussed, including 
bearing-based network localization, bearing-based forma-
tion control, and bearing-only formation control.

The emerging research area of bearing-based control and 
estimation is far from being fully explored. Many important 
problems remain unsolved. One key assumption for the 
results presented here is that the underlying graph is undi-
rected, which means any pair of neighbors must be able to 
access each other’s information. Since this assumption may 
not be valid in practical tasks, it is important to study the 
case of directed graphs. When the graph is directed, the con-
trol and estimation problem would become more compli-
cated because undesired equilibria may emerge, as observed 
in [68]. Similar problems also exist in distance-based forma-
tion control [73]–[75]. Despite the recent progress in bearing-
only formation control for special directed graphs [76], [77], 
the problem for general directed graphs remains an impor-
tant challenge in this area.

Another key assumption for the results in this article is 
that all bearings must be measured in a global reference 
frame. Global reference frames, however, may not be acces-
sible to each agent in some environments, such as indoors. It 
is important to study how to achieve control or estimation 
when bearings are measured in each agent’s local reference 
frames. One potential approach is to estimate or synchro-
nize the orientations of the local reference frames [10], [28]. 
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FIGURE 16 A simulation example for bearing-only formation control 
without a global reference frame: (a) the initial formation and (b) 
the final formation. The control law is given in [28, eq. (19)]. In this 
example, the formation has eight nodes and 13 edges. The target 
formation is a 3D cube that is infinitesimally bearing rigid. The con-
trol is based on interneighbor bearings expressed in each agent’s 
local reference frames. The orientations of the agents are syn-
chronized in the final formation.
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This approach has been applied to adapt the bearing-only 
formation control law in (17) to use locally measured bear-
ings [28, Sec. IV], and a simulation example is given in 
Figure 16. This is also a general approach for many types of 
formation control and network localization tasks in the 
absence of global reference frames [78], [79]. However, dis-
tributed orientation estimation or synchronization requires 
each agent to obtain its neighbors’ relative orientations, 
which are usually difficult to measure in practice. 

Other potential approaches that do not require an orien-
tation estimation may be based on bearing rigidity in the 
special Euclidean group SE(n) [26], [80]–[83] or complex 
Laplacian [52], [57]. A brief introduction to bearing rigidity 
in SE(2) is given in “Bearing Rigidity Theory for SE(2).” 
Nevertheless, the formation control strategies provided for 
SE(2) frameworks still require additional sensing [80], and 
a complete theory for bearing-only formation control is 
still unsolved.

In addition to network localization and formation con-
trol, many other tasks may also be achieved with bear-
ing-only measurements, such as bearing-only rendezvous 
[84]–[88], and bearing-only target tracking [16]–[18], [89], 
[90], although the analysis of these tasks may not rely on 
bearing rigidity theory. 

Bearing rigidity theory and its application to formation 
control and network localization are strongly motivated by 
the sensing mediums available to distributed and multia-
gent systems. This work contributed to the broader theory 
of cooperative control and estimation for networked sys-
tems and hopes to serve as a starting point for both practi-
tioners and theoreticians in this community.
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Bearing Rigidity Theory for SE(2)

Consider a collection of n nodes in .R S2 1#  Each point is 

described by its position p Ri
2!  and orientation .Si

1!}  

An SE(2) network, denoted as ( , , ),pG }  is the directed graph 

( , )G V E=  and the configuration ( , ),p }  where each vertex 

i V!  in the graph is mapped to the point ( , ) ( ).p SE 2i i !}  Note 

that with SE(2) networks, directed graphs are considered.

Suppose ( , )i j E!  is the k th directed edge, where 

{ , , },k m1 f=  and m denotes the number of directed edges 
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is the bearing gk  expressed in node i’s local reference frame. 

Define the directed bearing function associated with the SE(2) 

network, : ( ) ,F SE 2 SSE
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The corresponding directed bearing rigidity matrix is defined 

as the Jacobian of the directed bearing function
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Let R n3!d|  be a variation of the configuration ( , ).p }  If 

( , ) ,R p 0SE } d| =  then d|  is an infinitesimal SE(2) bearing 

motion of ( , ).pG }  There are three types of trivial infinitesimal 

SE(2) motions corresponding to translations, scalings, and 

coordinated rotations of the entire network. The coordinated 

rotation involves an angular rotation of each agent about its 

own body axis with a rigid-body rotation of the network (see 

Figure S6). An SE(2) network is infinitesimally bearing rigid if 

all infinitesimal bearing motions are trivial. A necessary and 

sufficient condition for an SE(2) network to be infinitesimally 

bearing rigid is [80], [81]
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is characterized in this way after a permutation of the matrix 

that groups the positions and attitudes of all of the agents to-

gether. Here, R /2r  is a rotation matrix that rotates any vector 

by / .2r

Detailed definitions in the SE(2) bearing rigidity theory can 

be found in [26], [80], and [81]. The SE(2) rigidity theory has 

been employed for distributed relative position estimation [26] 

and formation control [80], [81], [83]. A similar approach has 

been extended for SE(3) [82]. 
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FIGURE S6 An example of two congruent SE(2) networks. The 
above two networks differ in terms of translation, scaling, and 
coordinated rotation.
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