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My research interests

Networked unmanned aerial vehicle (UAV) systems

• Low-level: guidance, navigation, and flight control of single UAVs

• High-level: air traffic control, distributed control and estimation over
multiple UAVs

• Application of vision sensing: vision-based guidance, navigation, and
coordination control
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Research motivation

Vision-based formation control of UAVs

Two problems: formation control and vision sensing
1) formation control:

(a) Initial formation (b) trajectory (c) Final

Mature, require relative position measurements
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Research motivation

2) vision sensing
Step 1: recognition and tracking

Image Plane

3D Point
x

y z

Camera frame

Step 2: position estimation from bearings

Challenge: it is difficult to obtain accurate distance or relative position
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Research motivation

� Idea: formation control merely using bearing-only measurements
� Advantages: In practice, reduce the complexity of vision system. In theory,
prove that distance information is redundant.
� Challenges:

• Nonlinear system (linear if position feedback is available)

• A relatively new topic that had not been studied

� The focus of this talk: bearing-only formation control and related topics
� Vision sensing: ongoing research
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Bearing rigidity theory - Motivation

With bearing feedback, we control inter-agent bearings
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Question: when bearings can determine a unique formation shape?

(a) Desired
formation

(b) Resut (a) Desired
formation

(b) Result
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Bearing rigidity theory - Necessary notations

� Notations:

• Graph: G = (V, E) where V = {1, . . . , n} and E ⊆ V × V
• Configuration: pi ∈ Rd with i ∈ V and p = [pT1 , . . . , p

T
n ]T.

• Network: graph+configuration

� Bearing vector:

gij =
pj − pi
‖pj − pi‖

∀(i, j) ∈ E .

� An orthogonal projection matrix:

Pgij = Id − gijgTij ,

x
y

Pxy

• Pgij is symmetric positive semi-definite and P 2
gij = Pgij

• Null(Pgij ) = span{gij} ⇐⇒ Pgijx = 0 iff x ‖ gij (important)

8 / 36



Bearing rigidity theory - Two problems

Two problems in the bearing rigidity theory

• How to determine the bearing rigidity of a given network?

• How to construct a bearing rigid network from scratch?

(a) (b) (c) (d)

� Definition of bearing rigidity: shape can be uniquely determined by bearings
� Mathematical tool 1: bearing rigidity matrix
� Mathematical tool 2: bearing Laplacian matrix
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Bearing rigidity theory - Bearing rigidity matrix

� Mathematical tool 1: bearing rigidity matrix

f(p) ,

 g1
...
gm

 ∈ Rdm

R(p) ,
∂f(p)

∂p
∈ Rdm×dn

df(p) = R(p)dp

Trivial motions: translation and scaling

Examples:

(a) (b) (c) (d)

(a) (b) (c) (d)

Condition for Bearing Rigidity

A network is bearing rigid if and only if rank(R) = dn− d− 1.

Reference: S. Zhao and D. Zelazo, “Bearing rigidity and almost global bearing-only formation stabilization,”, IEEE

Transactions on Automatic Control, vol. 61, no. 5, pp. 1255-1268, 2016.
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Bearing rigidity theory - Bearing Laplacian matrix

� Mathematical tool 2: bearing Laplacian matrix
� B ∈ Rdn×dn with the ijth subblock matrix as

[B]ij =


0d×d, i 6= j, (i, j) /∈ E
−Pgij , i 6= j, (i, j) ∈ E∑
j∈Ni

Pgij , i ∈ V

Condition for Bearing Rigidity

A network is bearing rigid if and only if rank(B) = dn− d− 1.

Reference: S. Zhao and D. Zelazo, ”Localizability and distributed protocols for bearing-based network localization

in arbitrary dimensions,” Automatica, vol. 69, pp. 334-341, 2016.
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Bearing rigidity theory - Construction of networks

Construction of bearing rigid networks

Definition (Laman Graphs)

A graph G = (V, E) is Laman if |E| = 2|V| − 3 and every subset of k ≥ 2
vertices spans at most 2k − 3 edges.

� Why consider Laman graphs: (i) favorable since edges distribute evenly in a
Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be
constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph G = (V, E), a new graph G′ = (V ′, E ′) is formed by adding a
new vertex v to G and performing one of the following two operations:

(a) Vertex addition: connect vertex v to any two existing vertices i, j ∈ V. In
this case, V ′ = V ∪ {v} and E ′ = E ∪ {(v, i), (v, j)}.

(b) Edge splitting: consider three vertices i, j, k ∈ V with (i, j) ∈ E and
connect vertex v to i, j, k and delete (i, j). In this case, V ′ = V ∪ {v} and
E ′ = E ∪ {(v, i), (v, j), (v, k)} \ {(i, j)}.
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Bearing rigidity theory - Construction of networks

Two operations in Henneberg construction:

v

i
j

G

(a) Vertex addition

v

i
j
k

G

(b) Edge splitting

Main Result: Laman graphs are generically bearing rigid in arbitrary dimensions.
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Step 1: vertex
addition
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Step 2: edge
splitting
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Step 3: edge
splitting
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Step 4: edge
splitting
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Step 5: edge
splitting
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Step 6: edge
splitting

Reference: S. Zhao, Z. Sun, D. Zelazo, M. H. Trinh, and H.-S. Ahn, “Laman graphs are generically bearing rigid in

arbitrary dimensions,” in Proceedings of the 56th IEEE Conference on Decision and Control, (Melbourne,

Australia), December 2017. accepted
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Bearing-only formation control - Control law

Nonlinear bearing-only formation control law

ṗi(t) = −
∑
j∈Ni

Pgij(t)g
∗
ij , i = 1, . . . , n

• pi(t): position of agent i

• Pgij(t) = Id − gij(t)(gij(t))T

• gij(t): bearing between agents i and j at time t

• g∗ij : desired bearing between agents i and j

1

gij

g∗ij

Pgijg
∗
ij

−Pgijg
∗
ij

pi

pj

Figure: The geometric interpretation of the
control law.

1

2

1 2

Figure: The simplest simulation example.

Show video
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Bearing-only formation control - Stability analysis

Centroid and Scale Invariance

• Centroid of the formation

p̄ ,
1

n

n∑
i=1

pi

• Scale of the formation

s ,

√√√√ 1

n

n∑
i=1

‖pi − p̄‖2.

(a) Initial
formation

(b) trajectory (c) Final

Almost global convergence

• Two isolated equilibriums: one
stable, one unstable

1

2

3

1

2

3

Figure: The solid one is the target formation.

Reference: S. Zhao and D. Zelazo, “Bearing rigidity and
almost global bearing-only formation stabilization,” IEEE
Transactions on Automatic Control, vol. 61, no. 5, pp.
1255-1268, 2016.
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Bearing-based network localization

Distributed network localization

Given the inter-node bearings and some anchors, how to localize the network?
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Two key problems

• Localizability: whether a network can be possibly localized?

• Localization algorithm: if a network can be localized, how to localize it?
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Bearing-based network localization - Localizability

Not all networks are localizable:

From bearing rigidity to network localizability:

(a) infinitesimally 
bearing rigid (b) localizable

Add 
anchor/leader

Observations:
• bearing rigidity + two anchors =⇒ localizability
• bearing rigidity is sufficient but not necessary for localizability

(a) (b) 19 / 36



Bearing-based network localization - Localizability

Bearing Laplacian: B ∈ Rdn×dn and the ijth subblock matrix of B is

[B]ij =


∑
j∈Ni

Pgij , i ∈ V.
−Pgij , i 6= j, (i, j) ∈ E ,
0d×d, i 6= j, (i, j) /∈ E ,

Bearing Laplacian is a matrix-weighted Laplacian matrix. The bearing
Laplacian B can be partitioned into

B =

[
Baa Baf
Bfa Bff

]
Necessary and sufficient condition

A network is localizable if and only if Bff is nonsingular

Examples:

(a) (b) (c) (d) (e)
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Bearing-based network localization - Localization algorithm

� If a network is localizable, then how to localize it?
� Localization protocol:

˙̂pi(t) = −
∑
j∈Ni

Pgij (p̂i(t)− p̂j(t)), i ∈ Vf .

where Pgij = Id − gijgTij .

� Geometric meaning:

gij

−Pgij (p̂i(t)− p̂j(t))

p̂i(t)

p̂j(t)

� Matrix form: ˙̂p = −Bp̂

Convergence

The protocol can globally localize a network if and only if the network is
localizable.
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Bearing-based network localization - Localization algorithm

Simulation:
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(a) Random initial estimate
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(b) Final estimate
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(c) Total estimate error∑
i∈Vf

‖p̂i(t)− pi‖

S. Zhao and D. Zelazo, “Localizability and distributed protocols for bearing-based network localization in arbitrary
dimensions,” Automatica, vol. 69, pp. 334-341, 2016.
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From network localization to formation control

p̂1(t) = p1

p̂2(t) = p2p3

p4

p̂3(t)

p̂4(t)

(a) Network localization

p1(t) = p∗1

p2(t) = p∗2p∗3

p∗4

p3(t)

p4(t)

(b) Formation control

˙̂pi(t) = −
∑
j∈Ni

Pgij (p̂i(t)− p̂j(t)) =⇒ ṗi(t) = −
∑
j∈Ni

Pg∗ij (pi(t)− pj(t))

4
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(a) Initial formation
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(b) Final formation
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Bearing-based formation maneuver control

ṗi(t) = −
∑
j∈Ni

Pg∗ij

[
kp(pi(t)− pj(t)) + kI

∫ t

0
(pi(τ)− pj(τ))dτ

]
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ṗi(t) = vi(t), v̇i(t) = −
∑
j∈Ni

Pg∗ij
[kp(pi(t)− pj(t)) + kv(vi(t)− vj(t))]
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S. Zhao and D. Zelazo, “Translational and scaling formation maneuver control via a bearing-based approach,”

IEEE Transactions on Control of Network Systems, , vol. 4, no. 3, pp. 429-438, 2017 S. Zhao and D. Zelazo,

“Bearing Rigidity Theory and its Applications for Control and Estimation of Network Systems: Life beyond distance

rigidity”, IEEE Control Systems Magazine, accepted
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Formation control with motion constraints

How to handle motion constraints:
• nonholonomic constraint
• linear and angular velocity saturation
• obstacle avoidance and inter-neighbor collision avoidance

� The original gradient control law:

ṗi = fi, i ∈ V
� The proposed modified gradient control law:

ṗi = hih
T
i fi,

ḣi = (I − hihTi )fi, i ∈ V.
� Geometric interpretation:

wi = hi × fi

fi

ṗi = hih
T
i fihi

ḣi = (I − hih
T
i )fi

agent i
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Formation control with motion constraints

� The modified gradient control law:

ṗi = hih
T
i fi,

ḣi = (I − hihTi )fi, i ∈ V.

� A generalized version:

ṗi = κihih
T
i fi,

ḣi = (I − hihTi )hd
i ,

where κi(t) > 0 and hd
i (t) ∈ Rd are time-varying.

� Geometric interpretation:

fi

hi

hd
i

robot i

φd
iφ

d
m
ax

wi

Reference: S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, “A general approach to coordination control of

mobile agents with motion constraints,” IEEE Transactions on Automatic Control, accepted

28 / 36



Formation control with motion constraints - Simulation result

Distance-based formation control: unicycle robots, velocity saturation, obstacle
avoidance
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(b) The Lyapunov function
converges to zero.
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(c) The linear velocity saturation
is satisfied.
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(d) The angular velocity
saturation is satisfied.

Figure: Simulation results of distance-based formation control of unicycle agents with motion
constraints.
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Formation control with motion constraints - on going research

� Integrate velocity obstacle with formation control
� Show video
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Affine formation maneuver control

Different approaches lead to different maneuverability of the formation!
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(c) Translational and scaling maneuver

Can we achieve all of them simultaneously?
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Affine formation maneuver control
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Affine formation maneuver control

� Formation control law:

ṗi = −
∑
j∈Ni

ωij(pi − pj), i ∈ V.

� The matrix-vector form is

ṗ = −(Ω⊗ Id)p.

� Key properties of Ω under the assumption:

• Stability of Ω: positive semi-definite

• Null space of Ω: Null(Ω⊗ Id) = A(r)

A(r) =
{
p ∈ Rdn : pi = Ari + b, i ∈ V, ∀A ∈ Rd×d, ∀b ∈ Rd

}
=
{
p ∈ Rdn : p = (In ⊗A)r + 1n ⊗ b,∀A ∈ Rd×d, ∀b ∈ Rd

}
Reference: S. Zhao, “Affine formation maneuver control of multi-agent systems”, IEEE Transactions on Automatic

Control, conditionally accepted

show video
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The end

Topics covered by this talk:

• Bearing rigidity theory

• Bearing-only formation control law

• Bearing-based network localization

• Bearing-based formation maneuver control

• Formation control with motion constraints

• Affine formation maneuver control

Thank you!
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