# Bearing Rigidity Theory and its Applications for Control and Estimation of Network Systems

## Shiyu Zhao

#### Department of Automatic Control and Systems Engineering University of Sheffield, UK

Nanyang Technological University, Jan 2018

Networked unmanned aerial vehicle (UAV) systems

- Low-level: guidance, navigation, and flight control of single UAVs
- High-level: air traffic control, distributed control and estimation over multiple UAVs
- Application of vision sensing: vision-based guidance, navigation, and coordination control

## Research motivation

Vision-based formation control of UAVs



Two problems: formation control and vision sensing 1) formation control:



Mature, require relative position measurements

## Research motivation

2) vision sensing Step 1: recognition and tracking



Step 2: position estimation from bearings



Challenge: it is difficult to obtain accurate distance or relative position

◊ Idea: formation control merely using bearing-only measurements
 ◊ Advantages: In practice, reduce the complexity of vision system. In theory, prove that distance information is redundant.

◊ Challenges:

- Nonlinear system (linear if position feedback is available)
- A relatively new topic that had not been studied
- ◊ The focus of this talk: bearing-only formation control and related topics

◊ Vision sensing: ongoing research





**1** Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

# Outline

## 1 Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

## Bearing rigidity theory - Motivation

With bearing feedback, we control inter-agent bearings



Question: when bearings can determine a unique formation shape?



## Bearing rigidity theory - Necessary notations

◊ Notations:

- Graph:  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  where  $\mathcal{V} = \{1, \dots, n\}$  and  $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Configuration:  $p_i \in \mathbb{R}^d$  with  $i \in \mathcal{V}$  and  $p = [p_1^T, \dots, p_n^T]^T$ .
- Network: graph+configuration
- ◊ Bearing vector:

$$g_{ij} = \frac{p_j - p_i}{\|p_j - p_i\|} \quad \forall (i, j) \in \mathcal{E}.$$

An orthogonal projection matrix:

$$P_{g_{ij}} = I_d - g_{ij}g_{ij}^T,$$



- $P_{g_{ij}}$  is symmetric positive semi-definite and  $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\operatorname{Null}(P_{g_{ij}}) = \operatorname{span}\{g_{ij}\} \iff P_{g_{ij}}x = 0 \text{ iff } x \parallel g_{ij} \text{ (important)}$

Two problems in the bearing rigidity theory

- How to determine the bearing rigidity of a given network?
- How to construct a bearing rigid network from scratch?



- $\diamond$  Definition of bearing rigidity: shape can be uniquely determined by bearings
- ♦ Mathematical tool 1: bearing rigidity matrix
- ◊ Mathematical tool 2: bearing Laplacian matrix

## Bearing rigidity theory - Bearing rigidity matrix

◊ Mathematical tool 1: bearing rigidity matrix



#### Condition for Bearing Rigidity

A network is bearing rigid if and only if rank(R) = dn - d - 1.

Reference: S. Zhao and D. Zelazo, "Bearing rigidity and almost global bearing-only formation stabilization,", IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1255-1268, 2016.

 $\diamond$  Mathematical tool 2: bearing Laplacian matrix  $\diamond \mathcal{B} \in \mathbb{R}^{dn \times dn}$  with the *ij*th subblock matrix as

$$[\mathcal{B}]_{ij} = \begin{cases} \mathbf{0}_{d \times d}, & i \neq j, (i, j) \notin \mathcal{E} \\ -P_{g_{ij}}, & i \neq j, (i, j) \in \mathcal{E} \\ \sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V} \end{cases}$$

#### Condition for Bearing Rigidity

A network is bearing rigid if and only if  $rank(\mathcal{B}) = dn - d - 1$ .

Reference: S. Zhao and D. Zelazo, "Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions," Automatica, vol. 69, pp. 334-341, 2016.

# Bearing rigidity theory - Construction of networks

Construction of bearing rigid networks

#### Definition (Laman Graphs)

A graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  is Laman if  $|\mathcal{E}| = 2|\mathcal{V}| - 3$  and every subset of  $k \ge 2$  vertices spans at most 2k - 3 edges.

◊ Why consider Laman graphs: (i) favorable since edges distribute evenly in a Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be constructed by Henneberg Construction.

#### Definition (Henneberg Construction)

Given a graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ , a new graph  $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$  is formed by adding a new vertex v to  $\mathcal{G}$  and performing one of the following two operations:

- (a) Vertex addition: connect vertex v to any two existing vertices  $i, j \in \mathcal{V}$ . In this case,  $\mathcal{V}' = \mathcal{V} \cup \{v\}$  and  $\mathcal{E}' = \mathcal{E} \cup \{(v, i), (v, j)\}$ .
- (b) Edge splitting: consider three vertices  $i, j, k \in \mathcal{V}$  with  $(i, j) \in \mathcal{E}$  and connect vertex v to i, j, k and delete (i, j). In this case,  $\mathcal{V}' = \mathcal{V} \cup \{v\}$  and  $\mathcal{E}' = \mathcal{E} \cup \{(v, i), (v, j), (v, k)\} \setminus \{(i, j)\}.$

## Bearing rigidity theory - Construction of networks

Two operations in Henneberg construction:



Main Result: Laman graphs are generically bearing rigid in arbitrary dimensions.



Reference: S. Zhao, Z. Sun, D. Zelazo, M. H. Trinh, and H.-S. Ahn, "Laman graphs are generically bearing rigid in arbitrary dimensions," in *Proceedings of the 56th IEEE Conference on Decision and Control, (Melbourne, Australia), December 2017. accepted* 

# Outline

## **1** Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

## Bearing-only formation control - Control law

Nonlinear bearing-only formation control law

$$\dot{p}_i(t) = -\sum_{j \in \mathcal{N}_i} P_{g_{ij}(t)} g_{ij}^*, \quad i = 1, \dots, n$$

- $p_i(t)$ : position of agent i
- $P_{g_{ij}(t)} = I_d g_{ij}(t)(g_{ij}(t))^{\mathrm{T}}$
- $g_{ij}(t)$ : bearing between agents i and j at time t
- $g_{ij}^*$ : desired bearing between agents i and j



Figure: The geometric interpretation of the control law.



Figure: The simplest simulation example.

#### Show video

## Bearing-only formation control - Stability analysis

#### Centroid and Scale Invariance

• Centroid of the formation

$$\bar{p} \triangleq \frac{1}{n} \sum_{i=1}^{n} p_i$$

• Scale of the formation

$$s \triangleq \sqrt{\frac{1}{n} \sum_{i=1}^{n} \|p_i - \bar{p}\|^2}.$$



#### Almost global convergence

• Two isolated equilibriums: one stable, one unstable



Figure: The solid one is the target formation.

Reference: S. Zhao and D. Zelazo, "Bearing rigidity and almost global bearing-only formation stabilization," IEEE Transactions on Automatic Control, vol. 61, no. 5, pp. 1255-1268, 2016.

# Outline

## **1** Bearing rigidity theory

2 Bearing-only formation control

### 3 Bearing-based network localization

- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

## Bearing-based network localization

Distributed network localization

Given the inter-node bearings and some anchors, how to localize the network?



#### Two key problems

- Localizability: whether a network can be possibly localized?
- · Localization algorithm: if a network can be localized, how to localize it?

## Bearing-based network localization - Localizability

Not all networks are localizable:



From bearing rigidity to network localizability:



Observations:

- bearing rigidity + two anchors  $\Longrightarrow$  localizability
- · bearing rigidity is sufficient but not necessary for localizability



## Bearing-based network localization - Localizability

**Bearing Laplacian**:  $\mathcal{B} \in \mathbb{R}^{dn \times dn}$  and the *ij*th subblock matrix of  $\mathcal{B}$  is

$$[\mathcal{B}]_{ij} = \begin{cases} \sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V}. \\ -P_{g_{ij}}, & i \neq j, (i,j) \in \mathcal{E}, \\ \mathbf{0}_{d \times d}, & i \neq j, (i,j) \notin \mathcal{E}, \end{cases}$$

Bearing Laplacian is a *matrix-weighted Laplacian matrix*. The bearing Laplacian  $\mathcal{B}$  can be partitioned into

$$\mathcal{B} = \left[ egin{array}{cc} \mathcal{B}_{aa} & \mathcal{B}_{af} \ \mathcal{B}_{fa} & \mathcal{B}_{ff} \end{array} 
ight]$$

Necessary and sufficient condition

A network is localizable if and only if  $\mathcal{B}_{ff}$  is nonsingular

Examples:



## Bearing-based network localization - Localization algorithm

◇ If a network is localizable, then how to localize it?
 ◇ Localization protocol:

$$\dot{\hat{p}}_i(t) = -\sum_{j \in \mathcal{N}_i} P_{g_{ij}}(\hat{p}_i(t) - \hat{p}_j(t)), \quad i \in \mathcal{V}_f.$$

where  $P_{g_{ij}} = I_d - g_{ij}g_{ij}^T$ .

◊ Geometric meaning:



 $\diamond$  Matrix form:  $\dot{\hat{p}} = -\mathcal{B}\hat{p}$ 

#### Convergence

The protocol can globally localize a network if and only if the network is localizable.

#### Simulation:



S. Zhao and D. Zelazo, "Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions," Automatica, vol. 69, pp. 334-341, 2016.

# Outline

**1** Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

## From network localization to formation control



$$\dot{\hat{p}}_{i}(t) = -\sum_{j \in \mathcal{N}_{i}} P_{g_{ij}}(\hat{p}_{i}(t) - \hat{p}_{j}(t)) \implies \dot{p}_{i}(t) = -\sum_{j \in \mathcal{N}_{i}} P_{g_{ij}^{*}}(p_{i}(t) - p_{j}(t))$$



## Bearing-based formation maneuver control



S. Zhao and D. Zelazo, "Translational and scaling formation maneuver control via a bearing-based approach," *IEEE Transactions on Control of Network Systems*, , vol. 4, no. 3, pp. 429-438, 2017 S. Zhao and D. Zelazo, "Papering Rigidity, Theory and its Applications for Control and Estimation of Network Systems: Life bound distance

# Outline

**1** Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

## Formation control with motion constraints

How to handle motion constraints:

- nonholonomic constraint
- linear and angular velocity saturation
- obstacle avoidance and inter-neighbor collision avoidance
- ♦ The original gradient control law:

$$\dot{p}_i = f_i, \quad i \in \mathcal{V}$$

The proposed modified gradient control law:

$$\begin{split} \dot{p}_i &= h_i h_i^T f_i, \\ \dot{h}_i &= (I - h_i h_i^T) f_i, \quad i \in \mathcal{V}. \end{split}$$

◊ Geometric interpretation:



## Formation control with motion constraints

◊ The modified gradient control law:

$$\begin{split} \dot{p}_i &= h_i h_i^T f_i, \\ \dot{h}_i &= (I - h_i h_i^T) f_i, \quad i \in \mathcal{V}. \end{split}$$

◊ A generalized version:

$$\dot{p}_i = \kappa_i h_i h_i^T f_i,$$
  
$$\dot{h}_i = (I - h_i h_i^T) h_i^d,$$

where  $\kappa_i(t) > 0$  and  $h_i^d(t) \in \mathbb{R}^d$  are time-varying.  $\diamond$  Geometric interpretation:



Reference: S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, "A general approach to coordination control of mobile agents with motion constraints," *IEEE Transactions on Automatic Control*, accepted

## Formation control with motion constraints - Simulation result

Distance-based formation control: unicycle robots, velocity saturation, obstacle avoidance



 $\diamond$  Integrate velocity obstacle with formation control

 $\diamond$  Show video

# Outline

## **1** Bearing rigidity theory

- 2 Bearing-only formation control
- 3 Bearing-based network localization
- 4 Bearing-based formation control
- 5 Formation control with motion constraints
- 6 Affine formation maneuver control

Different approaches lead to different maneuverability of the formation!



Can we achieve all of them simultaneously?

# Affine formation maneuver control



## Affine formation maneuver control

♦ Formation control law:

$$\dot{p}_i = -\sum_{j \in \mathcal{N}_i} \omega_{ij} (p_i - p_j), \quad i \in \mathcal{V}.$$

The matrix-vector form is

$$\dot{p} = -(\Omega \otimes I_d)p.$$

 $\diamond$  Key properties of  $\Omega$  under the assumption:

- Stability of  $\Omega$ : positive semi-definite
- Null space of  $\Omega$ : Null $(\Omega \otimes I_d) = \mathcal{A}(r)$

$$\mathcal{A}(r) = \left\{ p \in \mathbb{R}^{dn} : p_i = Ar_i + b, i \in \mathcal{V}, \forall A \in \mathbb{R}^{d \times d}, \forall b \in \mathbb{R}^d \right\}$$
$$= \left\{ p \in \mathbb{R}^{dn} : p = (I_n \otimes A)r + \mathbf{1}_n \otimes b, \forall A \in \mathbb{R}^{d \times d}, \forall b \in \mathbb{R}^d \right\}$$

Reference: S. Zhao, "Affine formation maneuver control of multi-agent systems", *IEEE Transactions on Automatic Control*, conditionally accepted show video

# The end

Topics covered by this talk:

- Bearing rigidity theory
- Bearing-only formation control law
- Bearing-based network localization
- Bearing-based formation maneuver control
- Formation control with motion constraints
- Affine formation maneuver control

# Thank you!

- S. Zhao and D. Zelazo, "Bearing rigidity and almost global bearing-only formation stabilization,", *IEEE Transactions on Automatic Control*, vol. 61, no. 5, pp. 1255-1268, 2016.
- S. Zhao and D. Zelazo, "Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions," *Automatica*, vol. 69, pp. 334-341, 2016.
- S. Zhao and D. Zelazo, "Translational and scaling formation maneuver control via a bearing-based approach," *IEEE Transactions on Control of Network Systems*, , vol. 4, no. 3, pp. 429-438, 2017.
- S. Zhao, D. V. Dimarogonas, Z. Sun, and D. Bauso, "A general approach to coordination control of mobile agents with motion constraints," *IEEE Transactions on Automatic Control*, accepted
- S. Zhao, "Affine formation maneuver control of multi-agent systems", *IEEE Transactions on Automatic Control*, conditionally accepted
- S. Zhao and D. Zelazo, "Bearing Rigidity Theory and its Applications for Control and Estimation of Network Systems: Life beyond distance rigidity", *IEEE Control Systems Magazine*, accepted