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What is bearing rigidity?

Revisit distance rigidity:
� If we fix the length of each edge in a network, can the geometric pattern of
the network be uniquely determined?

Bearing rigidity:
� If we fix the bearing of each edge in a network, can the geometric pattern of
the network be uniquely determined?

Loose definition: a network bearing rigid if its bearings can uniquely determine
its geometric pattern.
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Why study bearing rigidity?

� Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]

� In recent years: Formation control and network localization [Eren et al.,
2003, Bishop, 2011, Eren, 2012, Zelazo et al., 2014, Zhao and Zelazo, 2016a]
� Network localization:
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Two key problems in bearing rigidity theory

• How to determine the bearing rigidity of a given network?

• How to construct a bearing rigid network from scratch?
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Notations for Bearing Rigidity

� Notations:

• Graph: G = (V, E) where V = {1, . . . , n} and E ⊆ V × V
• Configuration: pi ∈ Rd with i ∈ V and p = [pT1 , . . . , p

T
n ]

T.

• Network: graph+configuration

� Bearing:

gij =
pj − pi
‖pj − pi‖

∀(i, j) ∈ E .

Example:

g12

g13

1
g21

g23

2

g32g31

3

� An orthogonal projection matrix:

Pgij = Id − gijgTij ,
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Notations for Bearing Rigidity

� Properties:

0

gij

x

Pgij
x

• Pgij is symmetric positive semi-definite and P 2
gij = Pgij

• Null(Pgij ) = span{gij} ⇐⇒ Pgijx = 0 iff x ‖ gij (important)

� Bearing Laplacian: B ∈ Rdn×dn with the ijth subblock matrix as

[B]ij =


0d×d, i 6= j, (i, j) /∈ E
−Pgij , i 6= j, (i, j) ∈ E∑

j∈Ni
Pgij , i ∈ V

Example:

g12

g13

1
g21

g23

2

g32g31
3

B =

 Pg12 + Pg13 −Pg12 −Pg13
−Pg21

Pg21
+ Pg23

−Pg23
−Pg31

−Pg32
Pg31

+ Pg32
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Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao
and Zelazo, 2016b]

A network is bearing rigid if and only if
rank(B) = dn− d− 1

Proof.

f(p) ,

 g1
...
gm

 ∈ Rdm.

R(p) ,
∂f(p)

∂p
∈ Rdm×dn.

df(p) = R(p)dp

Trivial motions: translation and
scaling

� Examples of bearing rigid networks:

(a) (b) (c) (d)

� Examples of networks that are not
bearing rigid:

(a) (b) (c) (d)
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Construction of bearing rigid networks

� Importance: construct sensor networks and formation

� Need to design graph G and configuration p

� Graph VS configuration:

� Intuitively, it seems configuration is not that important. Is it true?

7 / 13



Construction of bearing rigid networks

� Importance: construct sensor networks and formation

� Need to design graph G and configuration p

� Graph VS configuration:

� Intuitively, it seems configuration is not that important. Is it true?

7 / 13



Construction of bearing rigid networks

� Importance: construct sensor networks and formation

� Need to design graph G and configuration p

� Graph VS configuration:

� Intuitively, it seems configuration is not that important. Is it true?

7 / 13



Construction of bearing rigid networks

Definition (Generically Bearing Rigid Graphs)

A graph G is generically bearing rigid in Rd if there exists at least one
configuration p in Rd such that (G, p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If G is generically bearing rigid in Rd, then (G, p) is bearing rigid for almost all
p in Rd in the sense that the set of p where (G, p) is not bearing rigid is of
measure zero. Moreover, for any configuration p0 and any small constant
ε > 0, there always exists a configuration p such that (G, p) is bearing rigid and
‖p− p0‖ < ε.

Summary:

• If a graph is generically bearing rigid, then for any almost all
configurations the corresponding network is bearing rigid.

• If a graph is not generically bearing rigid, by definition for any
configuration the corresponding network is not bearing rigid.
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Construction of bearing rigid graphs

� Construction of bearing rigid networks =⇒ construction of bearing rigid
graphs
� We consider Laman graphs

Definition (Laman Graphs)

A graph G = (V, E) is Laman if |E| = 2|V| − 3 and every subset of k ≥ 2
vertices spans at most 2k − 3 edges.

� Why consider Laman graphs: (i) favorable since edges distribute evenly in a
Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be
constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph G = (V, E), a new graph G′ = (V ′, E ′) is formed by adding a
new vertex v to G and performing one of the following two operations:

(a) Vertex addition: connect vertex v to any two existing vertices i, j ∈ V. In
this case, V ′ = V ∪ {v} and E ′ = E ∪ {(v, i), (v, j)}.

(b) Edge splitting: consider three vertices i, j, k ∈ V with (i, j) ∈ E and
connect vertex v to i, j, k and delete (i, j). In this case, V ′ = V ∪ {v} and
E ′ = E ∪ {(v, i), (v, j), (v, k)} \ {(i, j)}.
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Construction of bearing rigid graphs

Two operations in Henneberg construction:

v

i

j

G

(a) Vertex addition

v

i

j

k

G

(b) Edge splitting
Example:
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splitting
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Step 4: edge
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Step 5: edge
splitting
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Step 6: edge
splitting

Figure: The procedure to construct a three-dimensional bearing rigid network. The number of
edges in this network is equal to 2n− 3 = 13.
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Construction of bearing rigid graphs

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

� Rephrase the main result: If a graph is Laman, then for almost all
configurations the corresponding network is bearing rigid.

Proof.

Partition B into

B =

[
B11 B12

B21 B22

]
,

where B22 ∈ R2d×2d corresponds to nodes i, j. Then B′ can be expressed as

B′ =

 B11 B12 0
B21 B22 +D F

0 FT E

 ,

11 / 13



Construction of bearing rigid graphs

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

� Rephrase the main result: If a graph is Laman, then for almost all
configurations the corresponding network is bearing rigid.

Proof.

Partition B into

B =

[
B11 B12

B21 B22

]
,

where B22 ∈ R2d×2d corresponds to nodes i, j. Then B′ can be expressed as

B′ =

 B11 B12 0
B21 B22 +D F

0 FT E

 ,

11 / 13



Construction of bearing rigid graphs

� Question: is Laman both necessary and sufficient for bearing rigidity?
� Yes, in R2

Theorem

A graph is bearing rigid in R2 if and only if the graph contains a Laman
spanning subgraph.

� No, in higher dimensions

x

y

z

1 2

34

(a)

x

y

z

1 2

3

4

(b)
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Conclusion

� Two key problems in the bearing rigidity theory:

• How to examine the bearing rigidity of a given network?
• Bearing Laplacian
• Rank condition

• How to construct a bearing rigid network?
• Graph is critical
• Laman graphs are generically bearing rigid

13 / 13



A. N. Bishop. Stabilization of rigid formations with direction-only constraints.
In Proceedings of the 50th IEEE Conference on Decision and Control and
European Control Conference, pages 746–752, Orlando, FL, USA, December
2011.

T. Eren. Formation shape control based on bearing rigidity. International
Journal of Control, 85(9):1361–1379, 2012.

T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. O. Anderson.
Sensor and network topologies of formations with direction, bearing and
angle information between agents. In Proceedings of the 42nd IEEE
Conference on Decision and Control, pages 3064–3069, Hawaii, USA,
December 2003.

B. Servatius and W. Whiteley. Constraining plane configurations in
computer-aided design: Combinatorics of directions and lengths. SIAM
Journal on Discrete Mathematics, 12(1):136–153, 1999.

D. Zelazo, A. Franchi, and P. Robuffo Giordano. Rigidity theory in SE(2) for
unscaled relative position estimation using only bearing measurements. In
Proceedings of the 2014 European Control Conference, pages 2703–2708,
Strasbourgh, France, June 2014.

S. Zhao and D. Zelazo. Bearing rigidity and almost global bearing-only
formation stabilization. IEEE Transactions on Automatic Control, 61(5):
1255–1268, 2016a.

13 / 13



S. Zhao and D. Zelazo. Localizability and distributed protocols for
bearing-based network localization in arbitrary dimensions. Automatica, 69:
334–341, 2016b.

13 / 13


