Laman graphs are generically bearing rigid in arbitrary dimensions

Shiyu Zhao¹, Zhiyong Sun², Daniel Zelazo³, Minh-Hoang Trinh⁴, and Hyo-Sung Ahn⁴

¹ University of Sheffield, UK
 ² Australian National University, Australia
 ³ Technion - Israel Institute of Technology, Israel
 ⁴ Gwangju Institute of Science and Technology, Korea

December 2017

Revisit distance rigidity:

 \diamond If we fix the length of each edge in a network, can the geometric pattern of the network be uniquely determined?

Revisit distance rigidity:

 \diamond If we fix the length of each edge in a network, can the geometric pattern of the network be uniquely determined?

Bearing rigidity:

 \diamond If we fix the bearing of each edge in a network, can the geometric pattern of the network be uniquely determined?

Loose definition: a network bearing rigid if its bearings can uniquely determine its geometric pattern.

Why study bearing rigidity?

◊ Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]

Why study bearing rigidity?

◊ Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]
 ◊ In recent years: Formation control and network localization [Eren et al., 2003, Bishop, 2011, Eren, 2012, Zelazo et al., 2014, Zhao and Zelazo, 2016a]

Why study bearing rigidity?

◊ Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]
 ◊ In recent years: Formation control and network localization [Eren et al., 2003, Bishop, 2011, Eren, 2012, Zelazo et al., 2014, Zhao and Zelazo, 2016a]
 ◊ Network localization:

◊ Formation control:

- How to determine the bearing rigidity of a given network?
- How to construct a bearing rigid network from scratch?

 \diamond Notations:

- Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \dots, n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Configuration: $p_i \in \mathbb{R}^d$ with $i \in \mathcal{V}$ and $p = [p_1^T, \dots, p_n^T]^T$.
- Network: graph+configuration

◊ Notations:

- Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \dots, n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Configuration: $p_i \in \mathbb{R}^d$ with $i \in \mathcal{V}$ and $p = [p_1^T, \dots, p_n^T]^T$.
- Network: graph+configuration

◊ Bearing:

$$g_{ij} = \frac{p_j - p_i}{\|p_j - p_i\|} \quad \forall (i, j) \in \mathcal{E}.$$

Example:

◊ Notations:

- Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \dots, n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Configuration: $p_i \in \mathbb{R}^d$ with $i \in \mathcal{V}$ and $p = [p_1^T, \dots, p_n^T]^T$.
- Network: graph+configuration

◊ Bearing:

$$g_{ij} = \frac{p_j - p_i}{\|p_j - p_i\|} \quad \forall (i, j) \in \mathcal{E}.$$

Example:

An orthogonal projection matrix:

$$P_{g_{ij}} = I_d - g_{ij}g_{ij}^T,$$

◊ Properties:

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$ $\operatorname{Null}(P_{g_{ij}}) = \operatorname{span}\{g_{ij}\} \iff P_{g_{ij}}x = 0 \text{ iff } x \parallel g_{ij} \text{ (important)}$

◊ Properties:

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\operatorname{Null}(P_{g_{ij}}) = \operatorname{span}\{g_{ij}\} \iff P_{g_{ij}}x = 0 \text{ iff } x \parallel g_{ij} \text{ (important)}$

 \diamond Bearing Laplacian: $\mathcal{B} \in \mathbb{R}^{dn \times dn}$ with the ijth subblock matrix as

$$[\mathcal{B}]_{ij} = \begin{cases} \mathbf{0}_{d \times d}, & i \neq j, (i,j) \notin \mathcal{E} \\ -P_{g_{ij}}, & i \neq j, (i,j) \in \mathcal{E} \\ \sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V} \end{cases}$$

◊ Properties:

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\operatorname{Null}(P_{g_{ij}}) = \operatorname{span}\{g_{ij}\} \iff P_{g_{ij}}x = 0 \text{ iff } x \parallel g_{ij} \text{ (important)}$

 \diamond Bearing Laplacian: $\mathcal{B} \in \mathbb{R}^{dn \times dn}$ with the ijth subblock matrix as

$$[\mathcal{B}]_{ij} = \begin{cases} \mathbf{0}_{d \times d}, & i \neq j, (i, j) \notin \mathcal{E} \\ -P_{g_{ij}}, & i \neq j, (i, j) \in \mathcal{E} \\ \sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V} \end{cases}$$

Example:

Condition for Bearing Rigidity [Zhao and Zelazo, 2016b]

A network is bearing rigid if and only if $\operatorname{rank}(\mathcal{B}) = dn - d - 1$

Proof. $f(p) \triangleq \begin{vmatrix} g_1 \\ \vdots \end{vmatrix} \in \mathbb{R}^{dm}.$ $R(p) \triangleq \frac{\partial f(p)}{\partial p} \in \mathbb{R}^{dm \times dn}.$ df(p) = R(p)dpTrivial motions: translation and scaling

Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao and Zelazo, 2016b]

A network is bearing rigid if and only if $\operatorname{rank}(\mathcal{B}) = dn - d - 1$

Proof.

$$f(p) \triangleq \begin{bmatrix} g_1 \\ \vdots \\ g_m \end{bmatrix} \in \mathbb{R}^{dm}.$$

$$R(p) \triangleq \frac{\partial f(p)}{\partial p} \in \mathbb{R}^{dm \times dn}$$

$$df(p) = R(p)dp$$

Trivial motions: translation and scaling

 \diamond Examples of bearing rigid networks:

 \diamond Examples of networks that are not bearing rigid:

- Importance: construct sensor networks and formation
- \diamond Need to design graph ${\mathcal G}$ and configuration p

- Importance: construct sensor networks and formation
- \diamond Need to design graph ${\mathcal G}$ and configuration p
- \diamond Graph VS configuration:

- Importance: construct sensor networks and formation
- \diamond Need to design graph ${\mathcal G}$ and configuration p
- ◊ Graph VS configuration:

◊ Intuitively, it seems configuration is not that important. Is it true?

Definition (Generically Bearing Rigid Graphs)

A graph \mathcal{G} is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (\mathcal{G}, p) is bearing rigid.

Definition (Generically Bearing Rigid Graphs)

A graph \mathcal{G} is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (\mathcal{G}, p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If \mathcal{G} is generically bearing rigid in \mathbb{R}^d , then (\mathcal{G}, p) is bearing rigid for almost all p in \mathbb{R}^d in the sense that the set of p where (\mathcal{G}, p) is not bearing rigid is of measure zero. Moreover, for any configuration p_0 and any small constant $\epsilon > 0$, there always exists a configuration p such that (\mathcal{G}, p) is bearing rigid and $\|p - p_0\| < \epsilon$.

Definition (Generically Bearing Rigid Graphs)

A graph \mathcal{G} is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (\mathcal{G}, p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If \mathcal{G} is generically bearing rigid in \mathbb{R}^d , then (\mathcal{G}, p) is bearing rigid for almost all p in \mathbb{R}^d in the sense that the set of p where (\mathcal{G}, p) is not bearing rigid is of measure zero. Moreover, for any configuration p_0 and any small constant $\epsilon > 0$, there always exists a configuration p such that (\mathcal{G}, p) is bearing rigid and $||p - p_0|| < \epsilon$.

Summary:

- If a graph is generically bearing rigid, then for any almost all configurations the corresponding network is bearing rigid.
- If a graph is not generically bearing rigid, by definition for any configuration the corresponding network is not bearing rigid.

 \diamond Construction of bearing rigid networks \Longrightarrow construction of bearing rigid graphs

 \diamond Construction of bearing rigid networks \Longrightarrow construction of bearing rigid graphs

◊ We consider Laman graphs

Definition (Laman Graphs)

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is Laman if $|\mathcal{E}| = 2|\mathcal{V}| - 3$ and every subset of $k \ge 2$ vertices spans at most 2k - 3 edges.

 \diamond Construction of bearing rigid networks \Longrightarrow construction of bearing rigid graphs

◊ We consider Laman graphs

Definition (Laman Graphs)

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is Laman if $|\mathcal{E}| = 2|\mathcal{V}| - 3$ and every subset of $k \ge 2$ vertices spans at most 2k - 3 edges.

◊ Why consider Laman graphs: (i) favorable since edges distribute evenly in a Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be constructed by Henneberg Construction.

 \diamond Construction of bearing rigid networks \Longrightarrow construction of bearing rigid graphs

◊ We consider Laman graphs

Definition (Laman Graphs)

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is Laman if $|\mathcal{E}| = 2|\mathcal{V}| - 3$ and every subset of $k \ge 2$ vertices spans at most 2k - 3 edges.

◊ Why consider Laman graphs: (i) favorable since edges distribute evenly in a Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, a new graph $\mathcal{G}' = (\mathcal{V}', \mathcal{E}')$ is formed by adding a new vertex v to \mathcal{G} and performing one of the following two operations:

- (a) Vertex addition: connect vertex v to any two existing vertices $i, j \in \mathcal{V}$. In this case, $\mathcal{V}' = \mathcal{V} \cup \{v\}$ and $\mathcal{E}' = \mathcal{E} \cup \{(v, i), (v, j)\}$.
- (b) Edge splitting: consider three vertices $i, j, k \in \mathcal{V}$ with $(i, j) \in \mathcal{E}$ and connect vertex v to i, j, k and delete (i, j). In this case, $\mathcal{V}' = \mathcal{V} \cup \{v\}$ and $\mathcal{E}' = \mathcal{E} \cup \{(v, i), (v, j), (v, k)\} \setminus \{(i, j)\}.$

Two operations in Henneberg construction:

10/13

Two operations in Henneberg construction:

10/13

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

 \diamond Rephrase the main result: If a graph is Laman, then for almost all configurations the corresponding network is bearing rigid.

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

 \diamond Rephrase the main result: If a graph is Laman, then for almost all configurations the corresponding network is bearing rigid.

Proof.

Partition ${\mathcal B}$ into

$$\mathcal{B} = \left[egin{array}{cc} \mathcal{B}_{11} & \mathcal{B}_{12} \ \mathcal{B}_{21} & \mathcal{B}_{22} \end{array}
ight],$$

where $\mathcal{B}_{22} \in \mathbb{R}^{2d \times 2d}$ corresponds to nodes i,j. Then \mathcal{B}' can be expressed as

$$\mathcal{B}' = \begin{bmatrix} \mathcal{B}_{11} & \mathcal{B}_{12} & 0 \\ \mathcal{B}_{21} & \mathcal{B}_{22} + D & F \\ 0 & \overline{F}^T & \overline{F} & E \end{bmatrix},$$

◊ Question: is Laman both necessary and sufficient for bearing rigidity?

 \diamond Question: is Laman both necessary and sufficient for bearing rigidity? \diamond Yes, in \mathbb{R}^2

Theorem

A graph is bearing rigid in \mathbb{R}^2 if and only if the graph contains a Laman spanning subgraph.

 \diamond Question: is Laman both necessary and sufficient for bearing rigidity? \diamond Yes, in \mathbb{R}^2

Theorem

A graph is bearing rigid in \mathbb{R}^2 if and only if the graph contains a Laman spanning subgraph.

◊ No, in higher dimensions

- ◊ Two key problems in the bearing rigidity theory:
 - How to examine the bearing rigidity of a given network?
 - Bearing Laplacian
 - Rank condition
 - How to construct a bearing rigid network?
 - Graph is critical
 - Laman graphs are generically bearing rigid

- A. N. Bishop. Stabilization of rigid formations with direction-only constraints. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pages 746–752, Orlando, FL, USA, December 2011.
- T. Eren. Formation shape control based on bearing rigidity. *International Journal of Control*, 85(9):1361–1379, 2012.
- T. Eren, W. Whiteley, A. S. Morse, P. N. Belhumeur, and B. D. O. Anderson. Sensor and network topologies of formations with direction, bearing and angle information between agents. In *Proceedings of the 42nd IEEE Conference on Decision and Control*, pages 3064–3069, Hawaii, USA, December 2003.
- B. Servatius and W. Whiteley. Constraining plane configurations in computer-aided design: Combinatorics of directions and lengths. *SIAM Journal on Discrete Mathematics*, 12(1):136–153, 1999.
- D. Zelazo, A. Franchi, and P. Robuffo Giordano. Rigidity theory in SE(2) for unscaled relative position estimation using only bearing measurements. In *Proceedings of the 2014 European Control Conference*, pages 2703–2708, Strasbourgh, France, June 2014.
- S. Zhao and D. Zelazo. Bearing rigidity and almost global bearing-only formation stabilization. *IEEE Transactions on Automatic Control*, 61(5): 1255–1268, 2016a.

 S. Zhao and D. Zelazo. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions. *Automatica*, 69: 334–341, 2016b.