Laman graphs are generically bearing rigid in arbitrary dimensions

Shiyu Zhao1, Zhiyong Sun2, Daniel Zelazo3, Minh-Hoang Trinh4, and Hyo-Sung Ahn4

1University of Sheffield, UK
2Australian National University, Australia
3Technion - Israel Institute of Technology, Israel
4Gwangju Institute of Science and Technology, Korea

December 2017
What is bearing rigidity?

Revisit distance rigidity:
◊ If we fix the length of each edge in a network, can the geometric pattern of the network be uniquely determined?
What is bearing rigidity?

Revisit distance rigidity:
◇ If we fix the length of each edge in a network, can the geometric pattern of the network be uniquely determined?

Bearing rigidity:
◇ If we fix the bearing of each edge in a network, can the geometric pattern of the network be uniquely determined?

Loose definition: a network bearing rigid if its bearings can uniquely determine its geometric pattern.
Why study bearing rigidity?

- Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]

Network localization:

Formation control:
Why study bearing rigidity?

- Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]
Why study bearing rigidity?

◊ Initially: computer-aided graphical drawing [Servatius and Whiteley, 1999]
◊ Network localization:

◊ Formation control:
Two key problems in bearing rigidity theory

- How to determine the bearing rigidity of a given network?
- How to construct a bearing rigid network from scratch?
Notations for Bearing Rigidity

◊ Notations:

- **Graph**: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \ldots, n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- **Configuration**: $p_i \in \mathbb{R}^d$ with $i \in \mathcal{V}$ and $p = [p_1^T, \ldots, p_n^T]^T$.
- **Network**: graph+configuration

An orthogonal projection matrix:

$$P_{ij} = I_d - g_{ij} g_{ij}^T$$
Notations for Bearing Rigidity

◊ Notations:
 - Graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{1, \ldots, n\}$ and $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
 - Configuration: $p_i \in \mathbb{R}^d$ with $i \in \mathcal{V}$ and $p = [p_1^T, \ldots, p_n^T]^T$.
 - Network: graph+configuration

◊ Bearing:

$$g_{ij} = \frac{p_j - p_i}{\|p_j - p_i\|} \quad \forall (i, j) \in \mathcal{E}.$$

Example:

![Diagram](image-url)
Notations for Bearing Rigidity

◊ Notations:

- Graph: \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \) where \(\mathcal{V} = \{1, \ldots, n\} \) and \(\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \)
- Configuration: \(p_i \in \mathbb{R}^d \) with \(i \in \mathcal{V} \) and \(p = [p_1^T, \ldots, p_n^T]^T \).
- Network: graph + configuration

◊ Bearing:

\[g_{ij} = \frac{p_j - p_i}{\|p_j - p_i\|} \quad \forall (i, j) \in \mathcal{E}. \]

Example:

◊ An orthogonal projection matrix:

\[P_{g_{ij}} = I_d - g_{ij}g_{ij}^T. \]
Notations for Bearing Rigidity

⋄ Properties:

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\text{Null}(P_{g_{ij}}) = \text{span}\{g_{ij}\} \iff P_{g_{ij}} x = 0 \text{ iff } x \parallel g_{ij}$ (important)
Notations for Bearing Rigidity

◇ Properties:

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\text{Null}(P_{g_{ij}}) = \text{span}\{g_{ij}\} \iff P_{g_{ij}} x = 0$ iff $x \parallel g_{ij}$ (important)

◇ Bearing Laplacian: $\mathcal{B} \in \mathbb{R}^{dn \times dn}$ with the ijth subblock matrix as

$$[\mathcal{B}]_{ij} = \begin{cases} 0_{d \times d}, & i \neq j, (i, j) \notin \mathcal{E} \\ -P_{g_{ij}}, & i \neq j, (i, j) \in \mathcal{E} \\ \sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V} \end{cases}$$
Notations for Bearing Rigidity

- $P_{g_{ij}}$ is symmetric positive semi-definite and $P_{g_{ij}}^2 = P_{g_{ij}}$
- $\text{Null}(P_{g_{ij}}) = \text{span}\{g_{ij}\} \iff P_{g_{ij}}x = 0 \text{ iff } x \parallel g_{ij}$ (important)

Bearing Laplacian: $\mathcal{B} \in \mathbb{R}^{dn \times dn}$ with the ijth subblock matrix as

$$[\mathcal{B}]_{ij} = \begin{cases}
0_{d \times d}, & i \neq j, (i,j) \notin \mathcal{E} \\
-P_{g_{ij}}, & i \neq j, (i,j) \in \mathcal{E} \\
\sum_{j \in \mathcal{N}_i} P_{g_{ij}}, & i \in \mathcal{V}
\end{cases}$$

Example:

$$\mathcal{B} = \begin{bmatrix}
P_{g_{12}} + P_{g_{13}} & -P_{g_{12}} & -P_{g_{13}} \\
-P_{g_{21}} & P_{g_{21}} + P_{g_{23}} & -P_{g_{23}} \\
-P_{g_{31}} & -P_{g_{32}} & P_{g_{31}} + P_{g_{32}}
\end{bmatrix}$$
Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao and Zelazo, 2016b]

A network is bearing rigid if and only if

\[\text{rank}(\mathcal{B}) = dn - d - 1 \]

Proof.

\[f(p) \triangleq \begin{bmatrix} g_1 \\ \vdots \\ g_m \end{bmatrix} \in \mathbb{R}^{dm}. \]

\[R(p) \triangleq \frac{\partial f(p)}{\partial p} \in \mathbb{R}^{dm \times dn}. \]

\[df(p) = R(p)dp \]

Trivial motions: translation and scaling
Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao and Zelazo, 2016b]

A network is bearing rigid if and only if
\[\text{rank}(\mathcal{B}) = dn - d - 1 \]

Proof.

\[f(p) \triangleq \begin{bmatrix} g_1 \\ \vdots \\ g_m \end{bmatrix} \in \mathbb{R}^{dm}. \]

\[R(p) \triangleq \frac{\partial f(p)}{\partial p} \in \mathbb{R}^{dm \times dn}. \]

\[df(p) = R(p)dp \]

Trivial motions: translation and scaling

○ Examples of bearing rigid networks:

○ Examples of networks that are not bearing rigid:
Construction of bearing rigid networks

- Importance: construct sensor networks and formation
- Need to design graph G and configuration p
Construction of bearing rigid networks

- Importance: construct sensor networks and formation
- Need to design graph G and configuration p
- Graph VS configuration:
Construction of bearing rigid networks

- Importance: construct sensor networks and formation
- Need to design graph \mathcal{G} and configuration p
- Graph VS configuration:

 ![Graph examples]

- Intuitively, it seems configuration is not that important. Is it true?
Definition (**Generically Bearing Rigid Graphs**)

A graph \mathcal{G} is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (\mathcal{G}, p) is bearing rigid.
Construction of bearing rigid networks

Definition (Generically Bearing Rigid Graphs)

A graph G is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (G, p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If G is generically bearing rigid in \mathbb{R}^d, then (G, p) is bearing rigid for almost all p in \mathbb{R}^d in the sense that the set of p where (G, p) is not bearing rigid is of measure zero. Moreover, for any configuration p_0 and any small constant $\epsilon > 0$, there always exists a configuration p such that (G, p) is bearing rigid and $\|p - p_0\| < \epsilon$.
Construction of bearing rigid networks

Definition (Generically Bearing Rigid Graphs)

A graph G is generically bearing rigid in \mathbb{R}^d if there exists at least one configuration p in \mathbb{R}^d such that (G, p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If G is generically bearing rigid in \mathbb{R}^d, then (G, p) is bearing rigid for almost all p in \mathbb{R}^d in the sense that the set of p where (G, p) is not bearing rigid is of measure zero. Moreover, for any configuration p_0 and any small constant $\epsilon > 0$, there always exists a configuration p such that (G, p) is bearing rigid and $\|p - p_0\| < \epsilon$.

Summary:

- If a graph is generically bearing rigid, then for any almost all configurations the corresponding network is bearing rigid.
- If a graph is not generically bearing rigid, by definition for any configuration the corresponding network is not bearing rigid.
Construction of bearing rigid graphs

- Construction of bearing rigid networks \Rightarrow construction of bearing rigid graphs

Definition (Laman Graphs)

A graph $G = (V, E)$ is Laman if $|E| = 2|V| - 3$ and every subset of $k \geq 2$ vertices spans at most $2k - 3$ edges.

Why consider Laman graphs:
- Favorable since edges distribute evenly in a Laman graph;
- Widely used in, for example, distance rigidity;
- Can be constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph $G = (V, E)$, a new graph $G' = (V', E')$ is formed by adding a new vertex v to G and performing one of the following two operations:

(a) Vertex addition: connect vertex v to any two existing vertices $i, j \in V$. In this case, $V' = V \cup \{v\}$ and $E' = E \cup \{(v, i), (v, j)\}$.

(b) Edge splitting: consider three vertices $i, j, k \in V$ with $(i, j) \in E$ and connect vertex v to i, j, k and delete (i, j). In this case, $V' = V \cup \{v\}$ and $E' = E \cup \{(v, i), (v, j), (v, k)\} \setminus \{(i, j)\}$.
Construction of bearing rigid graphs

- Construction of bearing rigid networks \implies construction of bearing rigid graphs
- We consider Laman graphs

Definition (Laman Graphs)

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is Laman if $|\mathcal{E}| = 2|\mathcal{V}| - 3$ and every subset of $k \geq 2$ vertices spans at most $2k - 3$ edges.
Construction of bearing rigid graphs

- Construction of bearing rigid networks \implies construction of bearing rigid graphs
- We consider Laman graphs

Definition (Laman Graphs)

A graph $G = (V, E)$ is Laman if $|E| = 2|V| - 3$ and every subset of $k \geq 2$ vertices spans at most $2k - 3$ edges.

- Why consider Laman graphs: (i) favorable since edges distribute evenly in a Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be constructed by Henneberg Construction.
Construction of bearing rigid graphs

- Construction of bearing rigid networks \implies construction of bearing rigid graphs
- We consider Laman graphs

Definition (Laman Graphs)

A graph $G = (V, E)$ is Laman if $|E| = 2|V| - 3$ and every subset of $k \geq 2$ vertices spans at most $2k - 3$ edges.

- Why consider Laman graphs: (i) favorable since edges distribute evenly in a Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph $G = (V, E)$, a new graph $G' = (V', E')$ is formed by adding a new vertex v to G and performing one of the following two operations:

(a) **Vertex addition**: connect vertex v to any two existing vertices $i, j \in V$. In this case, $V' = V \cup \{v\}$ and $E' = E \cup \{(v, i), (v, j)\}$.

(b) **Edge splitting**: consider three vertices $i, j, k \in V$ with $(i, j) \in E$ and connect vertex v to i, j, k and delete (i, j). In this case, $V' = V \cup \{v\}$ and $E' = E \cup \{(v, i), (v, j), (v, k)\} \setminus \{(i, j)\}$.
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Figure: The procedure to construct a three-dimensional bearing rigid network. The number of edges in this network is equal to $2n - 3 = 13$.
Construction of bearing rigid graphs

Two operations in Henneberg construction:

Example:

Step 1: vertex addition

Figure: The procedure to construct a three-dimensional bearing rigid network. The number of edges in this network is equal to \(2n - 3 = 13\).
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Example:

Step 1: vertex addition

Step 2: edge splitting

\[
E = 2n - 3 = 13.
\]
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Example:

Step 1: vertex addition

Step 2: edge splitting

Step 3: edge splitting

Figure: The procedure to construct a three-dimensional bearing rigid network. The number of edges in this network is equal to $2n - 3 = 13$.
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Example:

Step 1: vertex addition

Step 2: edge splitting

Step 3: edge splitting

Step 4: edge splitting

Figure: The procedure to construct a three-dimensional bearing rigid network. The number of edges in this network is equal to $2n - 3 = 13$.

10 / 13
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Example:

Step 1: vertex addition

Step 2: edge splitting

Step 3: edge splitting

Step 4: edge splitting

Step 5: edge splitting
Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition

(b) Edge splitting

Example:

Step 1: vertex addition

Step 2: edge splitting

Step 3: edge splitting

Step 4: edge splitting

Step 5: edge splitting

Step 6: edge splitting
Construction of bearing rigid graphs

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

◊ Rephrase the main result: If a graph is Laman, then for almost all configurations the corresponding network is bearing rigid.
Construction of bearing rigid graphs

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions.

◊ Rephrase the main result: If a graph is Laman, then for almost all configurations the corresponding network is bearing rigid.

Proof.

Partition \mathcal{B} into

$$\mathcal{B} = \begin{bmatrix} \mathcal{B}_{11} & \mathcal{B}_{12} \\ \mathcal{B}_{21} & \mathcal{B}_{22} \end{bmatrix},$$

where $\mathcal{B}_{22} \in \mathbb{R}^{2d \times 2d}$ corresponds to nodes i, j. Then \mathcal{B}' can be expressed as

$$\mathcal{B}' = \begin{bmatrix} \mathcal{B}_{11} & \mathcal{B}_{12} & 0 \\ \mathcal{B}_{21} & \mathcal{B}_{22} + D & F \\ 0 & -F^T & -E \end{bmatrix},$$

where
Question: is Laman both necessary and sufficient for bearing rigidity?
Question: is Laman both necessary and sufficient for bearing rigidity?

Yes, in \mathbb{R}^2

Theorem

A graph is bearing rigid in \mathbb{R}^2 if and only if the graph contains a Laman spanning subgraph.
Question: is Laman both necessary and sufficient for bearing rigidity?
Yes, in \mathbb{R}^2

Theorem

A graph is bearing rigid in \mathbb{R}^2 if and only if the graph contains a Laman spanning subgraph.

No, in higher dimensions
Two key problems in the bearing rigidity theory:

- How to examine the bearing rigidity of a given network?
 - Bearing Laplacian
 - Rank condition
- How to construct a bearing rigid network?
 - Graph is critical
 - Laman graphs are generically bearing rigid

