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What is bearing rigidity?

Revisit distance rigidity:
o If we fix the length of each edge in a network, can the geometric pattern of
the network be uniquely determined?
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Bearing rigidity:
o If we fix the bearing of each edge in a network, can the geometric pattern of
the network be uniquely determined?
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Loose definition: a network bearing rigid if its bearings can uniquely determine
its geometric pattern.




Why study bearing rigidity?
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¢ Network localization:

© Formation control:




Two key problems in bearing rigidity theory

e How to determine the bearing rigidity of a given network?

e How to construct a bearing rigid network from scratch?
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© An orthogonal projection matrix:

T
Pgm = Ia — i 9ijs
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Notations for Bearing Rigidity

© Properties:
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e Py, is symmetric positive semi-definite and P 515 = Pai;
o Null( Py,,) = span{g;;} <= Py, ,x =0 iff z | 'gi; (important)

o Bearing Laplacian: B € R¥*9" with the ijth subblock matrix as

04xd, i#35,(i,5) ¢ €
[B]ZJ: _Pgij’ Z7é.77(7'7.7)€g
ZjeN-inU, ey
Example:
Pg1s + P13 —Poiy —Pgyg
—Lga1 Pggy + Pgag —Pgag

_P931 T1932 PQ31 + P932




Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao
and Zelazo, 2016b]

A network is bearing rigid if and only if
rank(B) =dn —d —1

Proof.

fo)= | | er™

R(p) A af(p) c Rd'mxdn‘

df(p) = R(p)dp

Trivial motions: translation and
scaling O
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Examine the bearing rigidity of a given network

Condition for Bearing Rigidity [Zhao
and Zelazo, 2016b]

A network is bearing rigid if and only if ¢ Examples of bearing rigid networks:
rank(B) =dn —d —1

Proof.

g (e) (f) ()

fo)2| | erR™,
o Examples of networks that are not

gm bearing rigid:

R(p) Iy 82;17) GRded". ﬁ ;?; H
a—%—0o
(a) (b) (c) (d)

df(p) = R(p)dp

Trivial motions: translation and
scaling O
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¢ Importance: construct sensor networks and formation
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¢ Importance: construct sensor networks and formation
¢ Need to design graph G and configuration p

o Graph VS configuration:
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o Intuitively, it seems configuration is not that important. Is it true?




Construction of bearing rigid networks

Definition (Generically Bearing Rigid Graphs)
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Construction of bearing rigid networks

Definition (Generically Bearing Rigid Graphs)

A graph G is generically bearing rigid in R? if there exists at least one
configuration p in R? such that (G,p) is bearing rigid.

Lemma (Density of Generical Bearing Rigid Graphs)

If G is generically bearing rigid in R, then (G, p) is bearing rigid for almost all
p in R? in the sense that the set of p where (G, p) is not bearing rigid is of
measure zero. Moreover, for any configuration po and any small constant

€ > 0, there always exists a configuration p such that (G, p) is bearing rigid and

llp — poll <.

Summary:

o If a graph is generically bearing rigid, then for any almost all
configurations the corresponding network is bearing rigid.

o If a graph is not generically bearing rigid, by definition for any
configuration the corresponding network is not bearing rigid.



Construction of bearing rigid graphs

o Construction of bearing rigid networks = construction of bearing rigid
graphs
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© We consider Laman graphs

Definition (Laman Graphs)

A graph G = (V, &) is Laman if || = 2|V| — 3 and every subset of k > 2
vertices spans at most 2k — 3 edges.

© Why consider Laman graphs: (i) favorable since edges distribute evenly in a
Laman graph; (ii) widely used in, for example, distance rigidity; (iii) can be
constructed by Henneberg Construction.

Definition (Henneberg Construction)

Given a graph G = (V, ), a new graph G’ = (V',£’) is formed by adding a

new vertex v to G and performing one of the following two operations:

(a) Vertex addition: connect vertex v to any two existing vertices i,7 € V. In
this case, V' =V U {v} and & = E U {(v,1), (v,5)}.

(b) Edge splitting: consider three vertices 4, j, k € V with (i,7) € £ and
connect vertex v to i, j, k and delete (4,5). In this case, V' =V U {v} and

&' =EU{(v,1), (v, 5), (v, )} \ {(i,5)}-
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Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition (b) Edge splitting

10/13



Construction of bearing rigid graphs

Two operations in Henneberg construction:

(a) Vertex addition (b) Edge splitting
Example:

Step 1: vertex
addition

10/13



Construction of bearing rigid graphs

Two operations in Henneberg construction:

Example:

Step 1: vertex Step 2: edge
addition splitting

10/13



Construction of bearing rigid graphs

Two operations in Henneberg construction:

Example:

Step 1: vertex Step 2: edge Step 3: edge
addition splitting splitting

10/13



Construction of bearing rigid graphs

Two operations in Henneberg construction:

Example:

Step 1: vertex Step 2: edge Step 3: edge
addition splitting splitting

Step 4: edge

splitting 10/13



Construction of bearing rigid graphs

Two operations in Henneberg construction:

Example:

Step 1: vertex Step 2: edge Step 3: edge
addition splitting splitting

Step 4: edge Step 5: edge

splitting splitting 10/13
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Two operations in Henneberg construction:

Example:

Step 1: vertex Step 2: edge Step 3: edge
addition splitting splitting

Step 4: edge Step 5: edge Step 6: edge

splitting splitting splitting 10/13



Construction of bearing rigid graphs

Theorem (Main Result) ’

Laman graphs are generically bearing rigid in arbitrary dimensions.

© Rephrase the main result: If a graph is Laman, then for almost all
configurations the corresponding network is bearing rigid.
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Construction of bearing rigid graphs

Theorem (Main Result)

Laman graphs are generically bearing rigid in arbitrary dimensions. ’

© Rephrase the main result: If a graph is Laman, then for almost all
configurations the corresponding network is bearing rigid.

Proof.
Partition B into

B Bi2
B =
{ Ba1 Bao } ’

where Baz € R?%*24 corresponds to nodes i, 5. Then B’ can be expressed as

B11 Bz ; 0
B'=|Ba BntD F |,
0 FT " TE
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Construction of bearing rigid graphs

< Question: is Laman both necessary and sufficient for bearing rigidity?
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Construction of bearing rigid graphs

< Question: is Laman both necessary and sufficient for bearing rigidity?
o Yes, in R?

Theorem

A graph is bearing rigid in R? if and only if the graph contains a Laman
spanning subgraph.

¢ No, in higher dimensions

z

|
—ay 8->y
O & j©, @

(a) (b)
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Conclusion

© Two key problems in the bearing rigidity theory:
e How to examine the bearing rigidity of a given network?

e Bearing Laplacian
e Rank condition

e How to construct a bearing rigid network?

e Graph is critical
e Laman graphs are generically bearing rigid
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