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Introduction: What is formation control?

Formation control has two objectives:
e Formation shape control
e Formation maneuver control
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Introduction: Various approaches

History of formation control:

e before consensus (2004)

e after consensus

Different ways to define target formations:
e inter-agent relative position
e inter-agent distance
e inter-agent bearing
e complex Laplacian
e barycentric coordinate

e stress matrix
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Introduction: Why so many approaches?

Different approaches lead to different maneuverability of the formation!

(b) Translational and (c) Translational and scaling maneuver
rotational maneuver

Can we achieve all of them simultaneously?
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Introduction: Our aim

Obstacle
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Figure: Our aim
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Problem statement

¢ Notations:
e Positions of the agents: p(t) = [p? (t),...,p% ()]
e The first n, agents are leaders and the rest n; agents are followers
o Underlying graph: G = (V, ), undirected and fixed
e Each agent can obtain the relative positions of its neighbors

o Nominal formation: p¢ = [(pH)7,..., (p)T]"
© Time-varying target formation:

o Element-wise expression:
* dipy,d | pd .
pi(t) = AP +H(1), i=1,....n
e Matrix-vector expression:

p () = [In ® A% ()]p* + 1, @ b(¢)



Problem statement

© Target formation:
pi(t) = AY0)pf +b°(), i=1,....n
o Different cases:
e translation: A% = I and b%(t) is arbitrary
e rotation: A is a rotation matrix
e scale: A =cI
e other: A is a general matrix

o Example:
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o How to generate A%(t) and b (t)
< Affine transformation: very general 6/19



Stress Matrix

© Stress w: a stress is a set of scalars, {wi;}(; jyee Where wi; = wji € R,
assigned to all the edges.
o Equilibrium stress:
> wilpy—p) =0, i€V
JEN;
© Physical meaning:
e w;; > 0 represents an attracting force
® w;; < 0 represents a repelling force
The vector w;;(x; — x;) represents the force applied on agent ¢ by agent j
through edge (i, 7). The forces applied on joint i by joints j € A; are balanced.
o Example:
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Stress Matrix

¢ Equilibrium stress:
Z wij(pj —pi) =0, i e V.
JEN;
© Matrix form as
Q& I)p =0,
where 2 € R"*™ is called the stress matrix satisfying
0, i# 7, (4,7) ¢ €,
[Q]U: —Wij, l#]v (7'7.7)653
Zke/\/}- Wik i =J-
© Stress matrix is a generalized graph Laplacian where the weight for an edge

can be positive, negative, or zero.

o Example: )
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Stress Matrix

Assumption (Stress Matrix of the Nominal Formation)

For the nominal formation (G, pd), assume there exists a positive semi-definite
stress matrix Q) satisfying rank(Q2) =n —d — 1.

o Explain later: why this assumption
< Conditions that satisfy the assumption:

Lemma (Sufficient condition)

Given an undirected graph G and a generic configuration p, then the
formation (G, p) is universally rigid if and only if there exists a stress matrix 2
such that Q) is positive semi-definite and rank(2) =d —n — 1.

Details on rigidity theory are omitted. Example:
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Lemma (Properties of the Nominal Formation)

Under Assumption 1, if {pf ™_, affinely span R%, the stress matrix of the
nominal formation satisfies

Null(Q ® I;) = A(p?)
where

Alp?) = {p’ e R : p; = Ap? +b,i € V,VA € R Wb e Rd}

_ {p' ER™:p = (I, ® A)p’ + 1, ®b,¥A € R4 Vb € ]Rd}

o Why this is important:
p*(t) € A(p”)
where p*(t) = [I, ® A%()]p? + 1, @ b%(t) is the target formation.
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The simplest affine formation control law

© The simplest affine formation control law [Lin et al., 2016]:

P = — Zwi]'(pi—pj), e V.
JEN;

¢ The matrix-vector form is
p=—(Q® la)p.

© Key properties of {2 under the assumption:
o Stability of Q: positive semi-definite
e Null space of Q: Null(Q ® I;) = A(p?)
< Convergence result:
e p(t) converges to a point in A(p?)
¢ Problem to solve:
e converge to desired trajectories p*(t) € A(p?).

e Solution: maneuvering leaders
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Leader selection: how many and which agents should be leaders?

Definition (Affine Localizability)

The formation (G, p?) is affinely localizable if for any p = [p{,p?]T € A(p?),
the value of py can be uniquely determined by py.

Theorem (Necessary and Sufficient Condition 1)

Under Assumption 1, formation (G, p®) is affinely localizable if and only if
ne > d+1 and {p}re, affinely span R,

o Affine span
e Definition: The affine span of {p;}7—; is the set of point 3", a;p; for all
{ai}i=; satisfying >  a; = 1.
e Geometric meaning:

12/19



Leader selection: how many and which agents should be leaders?

Let O = Q® I,. Partition Q according to the partition of leaders and followers
as

where Q7 € R(@ns)x(dny)
Theorem (Necessary and Sufficient Condition 2)

Under Assumption 1, formation (G,p?) is affinely localizable if and only if Q¢
is nonsingular. When $s¢ is nonsingular, py can be determined as
ps = =5} Qrepe.




Revisit the affine formation control law

Leader-follower control law:
pi=— Y wiy(pi—p;), i€Vs.
JEN;
The matrix-vector form is

pr = —SQssps — Qpepi.-
Theorem (Convergence Result)

Under Assumptions 1, if the leader velocity p; (t) is constantly zero, then the
tracking error 6, (t) converges to zero globally and exponentially fast.

Proof.
Tracking error: 6, (t) = py(t) — p}.
8oy = By (0) + Qpei =~y g8y, + Qb

Since py = 0, the tracking error d,, is globally and exponentially stable if and
only if Qs is nonsingular. O
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¢ Proportional-integral control:

Pi=—« Z wij (pi = p;) ﬂ/ Z wij (pi(T) — pi(7))dr, i€ Vy,

JEN; JEN;

proportional term integral term
¢ Double integrator model: position and velocity feedback
Pi = i,

i =— Y wij [kp(pi — ps) + ko(vi —v3)], i € Vy,
JEN;

¢ Double integrator model: position, velocity, and acceleration feedback
pl - Ui7

= —— Zw” p])-i‘ku(%_v])_v]}u

JEN’

where v; =37\ wij.



Other control laws

¢ Unicycle model:

T; = v; cos b,

yi Vi sin 01',
subject to linear and angular velocity saturation constraints:
b £
—v; <v; < vy,
r 1
¢ Control law:

v; = saty, { [cos b, sin 6;] Z wij(pj —pi) ¢,
JEN;

w; = satw, { [— sin 6;, cos 6;] Z wij(p; — ps)
JEN;
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Simulation examples

Nominal formation:

LETO
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The stress matrix is positive semi-definite and the eigenvalues are
{1.4432,1.3218,0.5967,0.3383,0,0,0}.
play a video for the double-integrator agents
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Simulation examples
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Conclusion

This talk introduced some leader-follower affine formation maneuver control
laws:

e achieve affine transformations
e can be implemented in local reference frames
e applicable to formation control in arbitrary dimensions
Main contribution:
o Leader selection
e Various linear/nonlinear control laws
Stress matrix:
e Generalized Laplacian matrix (negative edge weights)
e Positive definiteness and null space
Future work:

e Directed case
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