Distributed Affine Formation Maneuver Control of Multi-Agent Systems

Shiyu Zhao

Department of Automatic Control and Systems Engineering University of Sheffield, UK

University of Manchester, August 2017

Introduction: What is formation control?

Formation control has two objectives:

- Formation shape control
- Formation maneuver control

Introduction: Various approaches

History of formation control:

- before consensus (2004)
- after consensus

Different ways to define target formations:

- inter-agent relative position
- inter-agent distance
- inter-agent bearing
- complex Laplacian
- barycentric coordinate
- stress matrix

Example:

Introduction: Why so many approaches?

Different approaches lead to different maneuverability of the formation!

Can we achieve all of them simultaneously?

Introduction: Our aim

Figure: Our aim

◊ Notations:

- Positions of the agents: $p(t) = [p_1^T(t), \dots, p_n^T(t)]^T$
- The first n_ℓ agents are *leaders* and the rest n_f agents are *followers*
- Underlying graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, undirected and fixed
- Each agent can obtain the relative positions of its neighbors
- \diamond Nominal formation: $p^d = [(p_1^d)^T, \ldots, (p_n^d)^T]^T$
- ♦ Time-varying target formation:
 - Element-wise expression:

$$p_i^*(t) = A^d(t)p_i^d + b^d(t), \quad i = 1, \dots, n$$

• Matrix-vector expression:

$$p^*(t) = [I_n \otimes A^d(t)]p^d + \mathbf{1}_n \otimes b^d(t)$$

Problem statement

◊ Target formation:

$$p_i^*(t) = A^d(t)p_i^d + b^d(t), \quad i = 1, \dots, n$$

◊ Different cases:

- translation: $A^d = I$ and $b^d(t)$ is arbitrary
- rotation: A^d is a rotation matrix
- scale: $A^d = cI$
- other: A is a general matrix

♦ Example:

Nominal

Rotation

Scaling

Shear

1-4-2-3

 \diamond How to generate $A^d(t)$ and $b^d(t)$ \diamond Affine transformation: very general

Stress Matrix

 \diamond Stress ω : a stress is a set of scalars, $\{\omega_{ij}\}_{(i,j)\in\mathcal{E}}$ where $\omega_{ij} = \omega_{ji} \in \mathbb{R}$, assigned to all the edges.

◊ Equilibrium stress:

$$\sum_{j \in \mathcal{N}_i} \omega_{ij} (p_j - p_i) = 0, \qquad i \in \mathcal{V}.$$

◊ Physical meaning:

- $\omega_{ij} > 0$ represents an attracting force
- $\omega_{ij} < 0$ represents a repelling force

The vector $\omega_{ij}(x_j - x_i)$ represents the force applied on agent i by agent j through edge (i, j). The forces applied on joint i by joints $j \in \mathcal{N}_i$ are balanced. \diamond Example:

Stress Matrix

◊ Equilibrium stress:

$$\sum_{j\in\mathcal{N}_i}\omega_{ij}(p_j-p_i)=0,\qquad i\in\mathcal{V}.$$

Matrix form as

$$(\Omega \otimes I_d)p = 0,$$

where $\Omega \in \mathbb{R}^{n \times n}$ is called the *stress matrix* satisfying

$$[\Omega]_{ij} = \begin{cases} 0, & i \neq j, (i,j) \notin \mathcal{E}, \\ -\omega_{ij}, & i \neq j, (i,j) \in \mathcal{E}, \\ \sum_{k \in \mathcal{N}_i} \omega_{ik}, & i = j. \end{cases}$$

 \diamond Stress matrix is a generalized graph Laplacian where the weight for an edge can be positive, negative, or zero.

♦ Example:

Assumption (Stress Matrix of the Nominal Formation)

For the nominal formation (\mathcal{G}, p^d) , assume there exists a positive semi-definite stress matrix Ω satisfying rank $(\Omega) = n - d - 1$.

- ◊ Explain later: why this assumption
- ♦ Conditions that satisfy the assumption:

Lemma (Sufficient condition)

Given an undirected graph \mathcal{G} and a generic configuration p, then the formation (\mathcal{G}, p) is universally rigid if and only if there exists a stress matrix Ω such that Ω is positive semi-definite and $\operatorname{rank}(\Omega) = d - n - 1$.

Details on rigidity theory are omitted. Example:

Lemma (Properties of the Nominal Formation)

Under Assumption 1, if $\{p_i^d\}_{i=1}^n$ affinely span \mathbb{R}^d , the stress matrix of the nominal formation satisfies

 $\operatorname{Null}(\Omega \otimes I_d) = \mathcal{A}(p^d)$

where

$$\mathcal{A}(p^d) = \left\{ p' \in \mathbb{R}^{dn} : p'_i = Ap_i^d + b, i \in \mathcal{V}, \forall A \in \mathbb{R}^{d \times d}, \forall b \in \mathbb{R}^d \right\}$$
$$= \left\{ p' \in \mathbb{R}^{dn} : p' = (I_n \otimes A)p^d + \mathbf{1}_n \otimes b, \forall A \in \mathbb{R}^{d \times d}, \forall b \in \mathbb{R}^d \right\}$$

◊ Why this is important:

$$p^*(t) \in \mathcal{A}(p^d)$$

where $p^*(t) = [I_n \otimes A^d(t)]p^d + \mathbf{1}_n \otimes b^d(t)$ is the target formation.

◊ The simplest affine formation control law [Lin et al., 2016]:

$$\dot{p}_i = -\sum_{j \in \mathcal{N}_i} \omega_{ij} (p_i - p_j), \quad i \in \mathcal{V}.$$

◊ The matrix-vector form is

$$\dot{p} = -(\Omega \otimes I_d)p.$$

 \diamond Key properties of Ω under the assumption:

- Stability of Ω : positive semi-definite
- Null space of Ω : Null $(\Omega \otimes I_d) = \mathcal{A}(p^d)$

◊ Convergence result:

• p(t) converges to a point in $\mathcal{A}(p^d)$

Or Problem to solve:

- converge to desired trajectories $p^*(t) \in \mathcal{A}(p^d)$.
- Solution: maneuvering leaders

Definition (Affine Localizability)

The formation (\mathcal{G}, p^d) is affinely localizable if for any $p = [p_\ell^T, p_f^T]^T \in \mathcal{A}(p^d)$, the value of p_f can be uniquely determined by p_ℓ .

Theorem (Necessary and Sufficient Condition 1)

Under Assumption 1, formation (\mathcal{G}, p^d) is affinely localizable if and only if $n_\ell \geq d+1$ and $\{p_i^d\}_{i=1}^{n_\ell}$ affinely span \mathbb{R}^d .

◊ Affine span

- Definition: The *affine span* of $\{p_i\}_{i=1}^n$ is the set of point $\sum_{i=1}^n a_i p_i$ for all $\{a_i\}_{i=1}^n$ satisfying $\sum_{i=1}^n a_i = 1$.
- Geometric meaning:

Let $\bar{\Omega}=\Omega\otimes I_d.$ Partition $\bar{\Omega}$ according to the partition of leaders and followers as

$$\bar{\Omega} = \begin{bmatrix} \bar{\Omega}_{\ell\ell} & \bar{\Omega}_{\ell f} \\ \bar{\Omega}_{f\ell} & \bar{\Omega}_{ff} \end{bmatrix},$$

where $\bar{\Omega}_{ff} \in \mathbb{R}^{(dn_f) \times (dn_f)}$.

Theorem (Necessary and Sufficient Condition 2)

Under Assumption 1, formation (\mathcal{G}, p^d) is affinely localizable if and only if Ω_{ff} is nonsingular. When Ω_{ff} is nonsingular, p_f can be determined as $p_f = -\bar{\Omega}_{ff}^{-1}\bar{\Omega}_{f\ell}p_{\ell}$.

Revisit the affine formation control law

Leader-follower control law:

$$\dot{p}_i = -\sum_{j \in \mathcal{N}_i} \omega_{ij} (p_i - p_j), \quad i \in \mathcal{V}_f.$$

The matrix-vector form is

$$\dot{p}_f = -\bar{\Omega}_{ff} p_f - \bar{\Omega}_{f\ell} p_\ell^*.$$

Theorem (Convergence Result)

Under Assumptions 1, if the leader velocity $\dot{p}_{\ell}^{*}(t)$ is constantly zero, then the tracking error $\delta_{p_{f}}(t)$ converges to zero globally and exponentially fast.

Proof.

Tracking error: $\delta_{p_f}(t) = p_f(t) - p_f^*$.

$$\dot{\delta}_{p_f} = \dot{p}_f(t) + \bar{\Omega}_{f\ell} \dot{p}_\ell^* = -\bar{\Omega}_{ff} \delta_{p_f} + \bar{\Omega}_{f\ell} \dot{p}_\ell^*.$$

Since $\dot{p}_{\ell}^* = 0$, the tracking error δ_{p_f} is globally and exponentially stable if and only if $\bar{\Omega}_{ff}$ is nonsingular.

Other control laws

♦ Proportional-integral control:

$$\dot{p}_i = - \underbrace{\alpha \sum_{j \in \mathcal{N}_i} \omega_{ij}(p_i - p_j)}_{\text{proportional term}} - \underbrace{\beta \int_0^t \sum_{j \in \mathcal{N}_i} \omega_{ij}(p_i(\tau) - p_j(\tau)) \mathrm{d}\tau}_{\text{integral term}}, \quad i \in \mathcal{V}_f,$$

Oouble integrator model: position and velocity feedback

$$\begin{split} \dot{p}_i &= v_i, \\ \dot{v}_i &= -\sum_{j \in \mathcal{N}_i} \omega_{ij} \left[k_p (p_i - p_j) + k_v (v_i - v_j) \right], \ i \in \mathcal{V}_f, \end{split}$$

 \diamond Double integrator model: position, velocity, and acceleration feedback

$$\dot{p}_i = v_i,$$

$$\dot{v}_i = -\frac{1}{\gamma_i} \sum_{j \in \mathcal{N}_i} \omega_{ij} \left[k_p (p_i - p_j) + k_v (v_i - v_j) - \dot{v}_j \right],$$

where $\gamma_i = \sum_{j \in \mathcal{N}_i} \omega_{ij}$.

◊ Unicycle model:

$$\begin{aligned} \dot{x}_i &= v_i \cos \theta_i, \\ \dot{y}_i &= v_i \sin \theta_i, \\ \dot{\theta}_i &= w_i, \end{aligned} \tag{1}$$

subject to linear and angular velocity saturation constraints:

$$-\mathbf{v}_i^{\mathbf{b}} \leq v_i \leq \mathbf{v}_i^{\mathbf{f}}, \\ -\mathbf{w}_i^{\mathbf{r}} \leq w_i \leq \mathbf{w}_i^{\mathbf{l}};$$

♦ Control law:

$$v_{i} = \operatorname{sat}_{v_{i}} \left\{ \left[\cos \theta_{i}, \sin \theta_{i} \right] \sum_{j \in \mathcal{N}_{i}} \omega_{ij}(p_{j} - p_{i}) \right\},$$
$$w_{i} = \operatorname{sat}_{w_{i}} \left\{ \left[-\sin \theta_{i}, \cos \theta_{i} \right] \sum_{j \in \mathcal{N}_{i}} \omega_{ij}(p_{j} - p_{i}) \right\}.$$

Nominal formation:

The stress matrix is positive semi-definite and the eigenvalues are $\{1.4432, 1.3218, 0.5967, 0.3383, 0, 0, 0\}$. play a video for the double-integrator agents

Simulation examples

This talk introduced some leader-follower affine formation maneuver control laws:

- achieve affine transformations
- can be implemented in local reference frames
- applicable to formation control in arbitrary dimensions Main contribution:
 - Leader selection
 - Various linear/nonlinear control laws

Stress matrix:

- Generalized Laplacian matrix (negative edge weights)
- Positive definiteness and null space

Future work:

Directed case

Z. Lin, L. Wang, Z. Chen, M. Fu, and Z. Han. Necessary and sufficient graphical conditions for affine formation control. *IEEE Transactions on Automatic Control*, 61(10):2877–2891, October 2016.