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Abstract— Visual relative localization is widely used in multi-
robot systems. While semantic key points offer a promising
solution for 6DoF pose estimation, manual data labeling for
network training remains unavoidable. In this paper, we in-
troduce a novel method that jointly estimates the semantic
key point detection model and 6DoF camera pose. Our key
idea is to leverage the 3D-2D projection to produce pseudo
labels for detection model training while taking the key point
predictions as landmarks for 6DoF camera pose estimation.
Compared with state-of-the-art works, our method eliminates
the need for calibration and time synchronization of multi-
camera systems, requiring only a handful of manually labeled
data, which significantly improves the training efficiency. The
experiment validates the effectiveness and practicality of our
method in public datasets and real-world robotic applications.
Code and data are made available3.

I. INTRODUCTION

Visual relative localization and pose estimation have been
research topics with high interest in many autonomous robot
applications such as drone detection [1]–[3], drone flocking
[4], drone racing [5], multi-target tracking [6] [7], and swarm
state estimation [8]. Semantic key point detection provides
a promising solution to the 6DoF pose estimation problem
in robotics [5], [7]–[10]. Semantic key point detection with
deep neural networks classifies different types of key points
on the image. Combined with a geometric pose solver,
semantic key points prove to be a powerful tool for relative
pose estimation in multi-robot systems.

While deep neural networks for semantic key points de-
tection have achieved impressive results in computer vision
research [11], labeling large amounts of training data requires
time-consuming and error-prone manual operations. Unlike
general-purpose key point detection tasks such as human
pose estimation or facial landmark localization, acquiring
pre-labeled public datasets for a specific type of robot is
challenging. Researchers seeking to apply the semantic key
point detection model to real-world robot applications must
manually label data for a robot of a specific type. Therefore,
how to train the key point detection model at a low cost of
labeling is important and worth considering.

Multiple view constraints can be used to triangulate and
reproject 3D key points, producing pseudo labels for both
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Fig. 1: Illustration of aerial pursuit. Semantic key points
of the target drone are detected from the pursuer’s gimbal
camera image and used for relative pose estimation.

3D and 2D key points. Many works have been proposed
to leverage multiple view constraints for supervision [12]–
[18]. However, most existing works of semi-supervision from
multiple views assume that camera poses are known [12]
[18], or are incapable of estimating the entire 6DoF camera
poses [16] [17]. In addition, most previous works also require
using multiple synchronized cameras to observe the target
[16] [15]. Yet in practical situations, fast and convenient
6DoF camera calibration or multi-camera synchronization
is not an easy task. How to jointly optimize the key point
detection model and 6DoF camera poses from a time series
of frames in one single camera remains an open problem.

In this paper, we present a novel method to train a semantic
key point detection model in a semi-supervised manner. We
fully utilize multiple view constraints and jointly optimize
the detection model, 3D points, and 6DoF camera poses. We
start to train the detection network from a small fraction
of the training set and use reprojection to generate pseudo
labels for the unsupervised data. Through an iterative training
process, we finally gain the trained detection model, 6DoF
camera poses, and 3D points of the target. The contributions
and novelties of this paper are summarized as follows:

1) We propose a network-and-pose semi-supervised train-
ing strategy that optimizes both the detection model and
6DoF camera pose. This method significantly reduces the
workload of pose calibration and data annotation.

2) The proposed method utilizes only one moving camera
and takes the well-associated detection results fixed on the
rigid target as visual landmarks for 6DoF pose estimation.
Our method does not rely on multi-camera synchronization,
calibration, or video flow tracking.

3) We apply the proposed method to real-world robot
tasks, i.e. aerial pursuit and mobile robot formation, to prove



TABLE I: Comparison of features in representative works for semantic key point detection training from multiple views.

Method Object type 3D label 2D label Calibration Projection model #Cameras Time sync. Video tracking
MetaPose [14] Flexible ✗ ✓ ✗ Perspective Multiple ✓ ✓
Anipose [13] Flexible ✗ ✓ ✓ Perspective Multiple ✓ ✓
BKinD-3D [15] Flexible ✗ ✗ ✓ Perspective Multiple ✓ ✓
MBW [16] Flexible ✗ Small amount ✗ Orthogonal Multiple ✓ ✓
EpipolarPose [19] Flexible ✗ ✓ Optional Perspective Multiple ✓ ✓
Isakov et al. [20] Flexible ✓ ✓ ✓ Perspective Multiple ✓ ✓
Takahashi et al. [21] Flexible ✗ ✓ ✗ Perspective Multiple ✗ ✗
S3K [12] Rigid ✗ Small amount ✓ Perspective Single ✗ ✗
Ours Rigid ✗ Small amount ✗ Perspective Single ✗ ✗

the effectiveness and practicality of our method.

II. RELATED WORK

A. Visual Relative Localization and Data Labeling

Vision-based relative localization and pose estimation
are extensively employed in multi-robot systems. In aerial
systems, deep neural networks are utilized for 2D object
detection and semantic key point detection for localization
[1]–[4] and pose estimation [5], [7], [8]. Other robotic tasks
also adopt visual measurements for localization and pose
estimation, such as collaborative perception [9], manipulation
[12], [22], and underwater robot tracking [23].

A key challenge in applying deep neural network detectors
to real-world robotic tasks is data labeling. Some works that
adopt deep neural networks in multi-robot systems [6]–[8]
did not report the data labeling procedure for their custom
robot targets. The work in [4] uses a foreground mask to
generate training labels automatically. While this method is
convenient for labeling 2D bounding boxes, it can not be
applied to the labeling task for semantic key point detection.
A simulation environment can also be used to generate data
annotation automatically [9] [22]. However, performance is
likely to decline due to the domain difference between the
simulation and the real-world environment.

Apart from the above algorithm-based methods, an alter-
native way to facilitate data annotation is by adding an extra
hardware system. Some works [1] [24] use ultra-wide band
(UWB) systems to facilitate visual data annotation, which
requires extra hardware development. In addition to UWB,
the Vicon motion tracking system is also used for providing
ground truth pose and building datasets for visual target
tracking [25] [26]. However, the motion tracking system can
not be used in an outdoor environment.

B. Supervision from Multiple Views

In the context of robotics, S3K [12] uses one camera to
observe a static scene and takes multiple-view consistency to
achieve self-supervised 2D key point training. S3K does not
rely on a pre-calibrated synchronized multi-camera system.
However, camera poses for 3D triangulation in S3K are
assumed to be known.

In the context of computer vision, attempts have been
made to employ multiple-view supervision [13]–[16], [18],
[27] or epipolar constraints [28] [19] to realize a semi-
supervised training scheme for semantic key points. All

these works use multiple cameras to observe the target, and
camera poses and time stamps must be precisely calibrated
and synchronized. The work in [21] uses human target
key points as landmarks for multi-camera pose calibration
and synchronization. It relies on a pre-trained 2D detection
model, which still requires manual labeling of 2D points back
to its source. Other works [16], [17], [27] jointly estimate
3D semantic key points and camera rotations. However, as
they use the orthogonal projection model, only 3DoF camera
rotation can be estimated. Some works [16] [19] also use
video frames as input and optical flow tracking to generate
pseudo labels. Optical flow tracking is likely to fail when
large inter-frame overlap exists and tends to drift in the long
run.

Table I compares the features of different methods. The
novelties of our method are as follows: First, we utilize only
one moving camera to observe the target for data collection,
eliminating the need for multi-camera spatial calibration
or time synchronization. Additionally, we optimize 6DoF
camera poses concurrently with the detection model based
on the perspective model during the data collection process.
Finally, our method does not rely on video flow tracking and
hence performs well even when inter-frame overlap is small.

III. PROPOSED METHOD

A. Overview

In this section, we introduce the overview of our method,
as shown in Fig. 2. The whole process consists of two
optimization modules, 1) optimization of the semantic key
point detection model and 2) optimization of camera poses
and 3D points.

We define the key point detection module as

f(I)→ {Hi}ni=0, (1)

where f refers to the detection network and I ∈ Rw×h

denotes the input image. Hi refers to the heat map of an
individual class of key points produced by the network, and
n denotes the number of classes of the key points to be
detected. k denotes the number of total frames. The initial
training set is defined as

T (0) := {{Ii,Hn
i }mi=0}, (2)

where Hn
i denotes the label for all key points and m denotes

the number of the initial training set. In the following part, we
use superscript in the bracket to represent the iteration round.



Fig. 2: Overview of our semi-supervised network-and-pose training process.

The initial training set T (0) is used to train the initial weak
detection model f (0). Note that T (0) is labeled manually.

When the training of the initial weak detection model f (0)

is completed, we take it as the detection model and perform
inference on the whole training set T (all) to produce a set
of heat map predictions (0){Hi}ni=0. 2D key points locations
(0){pj}nj=0 are extracted from (0){Hi}ni=0. Then the pose
estimation module uses these points to estimate camera poses
Ti ∈ SE(3) in the target frame and 3D points (0){Pj}nj=0:

PS((0){pj}nj=0)→ {(1){Ti}ki=0,
(1) {Pj}nj=0}. (3)

With the estimated camera poses and 3D points, new key
points annotations in the training set T 1 can be generated
by projections,

(1){Hn
i }mi=0 = Π((1){Ti}ki=0,

(1) {Pj}nj=0,K), (4)

where Π represents the 3D-2D projection and K denotes the
camera intrinsics. Then we re-train the detection model on
the enlarged set T (1) ∪ T (0) and yield an improved model
f (1). During re-training, the loss function is

L(θ) = Ls(θ) + λLu(θ), (5)

where Ls(θ) denotes supervised losses on the initial labeled
set and Lu(θ) denotes the unsupervised losses on the labels
generated by Eq. (5). λ is a weight factor and is determined
by the uncertainty of the projection-generated pseudo labels.
When the re-training is finished, the detection model f (1)

is further improved as the total training set is enlarged
and covers more viewpoints. We use the refined detection
model f (1) on T (all) and yield a new set of 2D key points
(1){pj}nj=0. As f (1) is improved, more accurate camera
poses are expected to be estimated from the improved 2D
observations (1){pj}nj=0. Note that not all 2D observations
should be used for pose estimation. We select valid key
points according to their covariance, which is addressed in
detail in the first part of Section D.

The arrow cycle in Fig. 2 illustrates the iteration process.
By repeating the network-and-pose dual optimization cycle,
the detection model f (r), the camera poses (r){Ti}ki=0 and
3D structures (r){Pj}nj=0 at iteration round r can be stepwise
improved, even though we only have a handful of ground-
truth labels and no prior information about the camera poses

at the beginning. To ensure the detection model f (r) is im-
proved after every step, newly added labels from projection
should be carefully scored according to their uncertainty.
This is controlled by the factor λ in Eq.(5). In the second part
of Section D, we will discuss how to determine this factor in
detail. Algorithm I describes the whole optimization process
step by step. For the sake of simplicity, we omit the set
symbol for heat maps, camera poses, and 3D points in the
pseudo code.

Algorithm 1 Network-and-pose semi-supervised training

Input:
Labeled initial training data T (0);

Output: Refined detection model f (q), camera poses (q)Ti

and 3D points (q)Pj

1: for iteration r in 0 to q do
2: if r == 0 then

f (0) ← train(T (0));
3: else
4: Run prediction with f (r) to get 2D key points;
5: Run pose estimation to get (r)Ti and (r)Pi (Eq.(3));
6: Generate labels T (r) by projection (Eq.(4));
7: Evaluate valid labels with uncertainty metric;
8: Retrain detection model with the enlarged set;

f (r+1) ← train(T (r) ∪ T (0));
9: end if

10: end for

B. Semantic Key Point Detection Module

Many different network architectures have been proposed
for semantic key point detection [11] [29]. Our semi-
supervised method does not rely on a particular kind of
network architecture. We choose U-net [30] as the basic
architecture and use a top-down detection scheme. U-net is
a light-weighted network for pixel-wise classification. Heat
map regression is performed for the training and prediction
of the U-net. Kullback–Leibler divergence is used as training
loss. In practice, KL divergence tends to produce singular
loss values due to zero entries in label heat maps. We address
this issue by adding a logarithm softmax operation at the end
of the network.



C. Camera Pose and 3D Points Estimation Module

Since the key point detection model already provides 2D
observations which are well-associated between frames, we
take them as landmarks for camera pose estimation. We set
the camera pose in the target frame. As landmarks are fixed
on the target, pose estimation is not influenced when the
target is moving in the world frame. This is particularly ad-
vantageous in the case of dynamic target data collection. To
realize an efficient, robust, and initialization-free estimation
module, we leverage the recent advance in neural-fashioned
structure from motion, i.e. the DPESFM [31] for initial pose
estimation. Given key point locations, the DPESFM produces
a good initial guess for poses and points to be estimated. With
a least-square bundle adjustment for refinement, accurate
camera poses and 3D points can be recovered efficiently and
precisely. Note that using DPESFM for initialization is not a
must, conventional 3D initialization methods like least-square
triangulation are also viable alternatives.

D. Uncertainty Propagation for the Unsupervised Data

In this section, we aim to address the following question:
How to properly evaluate heat map predictions and pseudo
labels to select valid ones for the next turn of optimization?
We first derive the uncertainty representation of heat map
prediction, then we propagate it to the uncertainty of bundle
adjustment to get the uncertainty of pseudo-labels.

1) Uncertainty of the Heat Map Prediction: This part aims
to extract the predicted key point location µ and observation
covariance C for uncertainty evaluation. C is used for
the selection of valid key point predictions and uncertainty
derivation of pose estimation. Provided that the detection
model is sufficiently trained, heat map predictions from the
network should be consistent with its supervision labels, i.e.
in a 2D Gaussian distribution as well. The predicted heat
map can be represented as

P(x;µ,C) =
1

2π|C|1/2
exp(−1

2
(x− µ)TC−1(x− µ)),

(6)

where x is the image coordinate, µ is the mean of the
Gaussian and C is the covariance of the 2D Gaussian, i.e.
C = diag(σu, σv). A straightforward way of obtaining µ
is to set µ at the maximum activation location µ = xmax

and C as the negative inversion of the Hessian at xmax. In
practice, due to noises in the predicted heat map, xmax is
unlikely to be the true mean location. To further refine the
key point location, we add the following operations. We first
apply the logarithmic transformation to the predicted heat
map M(x) = ln(P(x)). The gradient and Hessian, i.e. the
first and second order derivative of the logarithm-transformed
heat map are

M′(x) =
∂M(x)

∂x
= −C−1(x− µ), (7a)

H =M′′(x) =
∂2M(x)

∂x2
= −C−1, (7b)

where H(x) represents the Hessian matrix. By computing
H(xmax) on M, covariance of the heat map prediction is
recovered,

C−1 = −H(x)|xmax , (8)

where u, v denotes the image axis. As image gradient
M′(xmax) at xmax can be easily computed, by combining
Eq. (7a), Eq. (7b), and Eq. (8), the refined mean location µ
can be recomputed as

µ = xmax +CM′(xmax). (9)

2) Uncertainty of Reprojection Pseudo Labels: This part
aims to derive the uncertainty of reprojection and set
it as the weight factor λ in Eq.(5) for each individ-
ual pseudo label. The classic bundle adjustment problem
can be formulated as the maximum likelihood estima-
tion of poses T = {T0,T1...Tk} and 3D points P =
{P0,P1...Pn}. We use x to represent estimation parameters
x = {T0,T1...Tk,P0,P1...Pn}. The estimation problem
can be written as

x⋆ = argmin
x

1

2

w∑
i=0

rTuvC
−1
uv ruv, (10)

where the cost function is the sum of squared reprojection
error ruv . Cuv has been derived in Eq.(8) and w denotes
the number of total observations. Uncertainty of camera
poses and 3D points are measured through the covariance
of parameter x:

Cov[x⋆] = (JTC−1
all J)

−1, (11)

where J = ∂r/∂xT|x⋆ is the Jacobian matrix of the total
reprojection residual r relative to x. Call ∈ R2w×2w is a
block diagonal matrix with w observation covariance on the
diagonal. In practice, the Hessian H ≈ JTC−1

all J is calcu-
lated for each iteration. To avoid inversion of the Hessian, we
take the Fisher information matrix (FIM) Ix = JT

xC
−1
all Jx to

measure the uncertainty. We choose the trace of the FIM and
average residual as the metric for uncertainty,

λi = α Trace(Iix⋆), (12)

where Iix⋆ denotes the ith camera pose block in the FIM. α is
a positive scaling factor. We treat α as a hyperparameter. The
trace of FIM reflects how informative the current detection
results are. Eq.(12) indicates that we assign lower weights
to frames which is less observable, and higher weights to
frames of which the observations are more informative.

IV. EXPERIMENTAL EVALUATIONS

A. Experiment on the YCB Video Dataset

In this section, we conduct experiments on the YCB video
dataset [32] to verify the effectiveness of our method. We
select several objects and skip ones lacking in remarkable
corner key points. For each selected object, we choose 5
scenes for training and validation, and another 2 scenes
for testing. The detection model takes an input of 320×240
pixels. We train the network on an Nvidia GeForce RTX



(a) Iteration round 0 (b) Iteration round 1 (c) Iteration round 2

Fig. 3: Camera trajectory of scene #50 in the YCB video dataset. The color of each dot reflects the average reprojection
error of that frame. Note that at round 0, camera poses are initialized with the DPESFM, and the average error is around 5
pixels. After several iterations with our method, reprojection errors of most images narrow down.

Fig. 4: Key points detection results and heat map predictions
from the detection network on the YCB video dataset.

4090 GPU with the RMSprop optimizer and a learning rate
of 1e-05. Fig. 3 shows the 3D camera trajectory of scene
#50 in the YCB video dataset. The target object is the
mustard bottle which contains 7 key points. We can see
that at iteration round 0, the average reprojection error is
around 5 pixels, which is not accurate enough to produce
pseudo labels. This is because poses are initialized by the
DPESFM without bundle adjustment refinement. After two
rounds of iteration, the reprojection error at most frames
narrowed down to less than 1 pixel.

Determining the ratio of initially manually labeled data is
a critical challenge. We must strike a balance between the
performance of the initial detection model and the workload
for human labeling. Factors like illumination conditions and
viewpoint distribution may influence model performance,
making it intractable to determine an optimal initial ratio
analytically. To find a reasonable initial ratio, we test the
relation between pixel error and labeled training data ratio,
as shown in Fig. 5. By projecting the intersection point of
the reprojection threshold and reprojection-ratio curve onto
the X-axis, as shown by the red dotted line in Fig. 5, we
get a reasonable label ratio. In practice, we choose 4 pixels
as the threshold, since the radius of the heat map kernel
is 2 pixels. From Fig. 5 we also find that training with an
extremely small fraction of labels (1% to 2%) fails to produce
a qualified detection model for pose estimation, as the model
is poorly trained and most detected landmarks are invalid.
When starting training with more than 70% of total data,
the improvement from pose estimation and pseudo labels
becomes marginal, as the performance of the initial model

closely matches that of the model trained with pseudo labels.

Fig. 5: Relation between average pixel error and labeled
training data ratio. The red dotted line represents the repro-
jection threshold and its intersection with the curve is treated
as the empirical initial ratio.

TABLE II: Average detection errors in pixels of different
training conditions. The percentage in the first row denotes
the training data ratio. FS refers to the fully-supervised
training. SS refers to our semi-supervised training strategy.

Object 1%-FS 10%-FS SS 100%-FS
003 cracker box 19.98 14.25 1.27 0.87
004 sugar box 18.78 12.61 0.90 0.80
006 mustard bottle 17.59 11.95 0.79 0.75
008 pudding box 18.96 9.62 0.98 0.54
009 gelatin box 20.68 8.54 0.92 0.72
010 potted meat can 24.11 18.32 0.58 0.43
019 pitcher base 27.54 12.17 0.91 0.61
025 mug 19.21 11.15 0.79 0.45
035 power drill 18.60 12.28 1.11 0.98
Average 20.61 12.32 0.92 0.68

As depicted in Table II, the detection error of our semi-
supervised method closely matches that of the 100% fully-
supervised training method by 0.24 pixels, despite beginning
training with only 10%-20% labeled data. Fully-supervised
training with 1% or 10% of total data produces sub-par
results. The key reason for the performance improvement is
that the semi-supervised method greatly increases the number
of valid training data. This proves the effectiveness and
accuracy of our semi-supervised method.



Fig. 6: Detection results of the outdoor aerial pursuit experiments.

Finally, we compare the performance of our method with
that of the state-of-the-art semi-supervised method for se-
mantic key point detection. As discussed in Table I, among
all the state-of-the-art methods, S3K [12] has equivalent
experimental settings to our method, so we choose it as a
baseline method. Other methods require multiple synchro-
nized cameras, which is different from our setting. Compared
with S3K, our method can recover camera poses for trian-
gulation and train the detection model in a semi-supervised
manner. We use the term ”ours” to represent our basic semi-
supervised method. In addition, as discussed in Sec.III-D,
our method adds three more techniques regarding uncertainty
modeling to improve the detection performance: 1) Modeling
the covariance of the predicted heat map (Eq. 8), denoted by
”UH”. 2) Refinement for key point location (Eq. 9), denoted
by ”Ref”. 3) Modeling of pseudo label weights (Eq. 12),
denoted by ”UL”.

Ground truth camera poses from the YCB-video dataset
are used for S3K. Table III shows the comparison and
ablation study results. Detection errors are averaged from
different objects. Comparative and ablation results show that
given ground truth camera poses, S3K and our basic method
produce key point detection accuracy of the same level.
The results of S3K are 0.2 pixels more accurate than ours
since it uses ground truth camera poses for triangulation.
While S3K can not recover camera poses, ours recovers
poses with an accuracy level of 1.6 deg. and 29 mm. The
uncertainty modeling and point location refinement improve
the overall performance of detection accuracy. In conclusion,
our method produces a nearly on-par performance with S3K
while recovering 6DoF camera poses.

B. Real World Experiment 1: MAVs Pursuit

In this part, we conduct experiments on outdoor MAV
detection and pursuit. During the pursuit, the pursuer relies
on visual key points to estimate the target’s pose, facilitating
tracking and capture. Fig. 7 shows the experimental setup.
We use a DJI M300 as the carrier and the DJI H20 gimbal
camera to capture images. The platform is also equipped with
a DJI manifold with the Nvidia Jetson TX2 as the onboard
computation unit. The pursuer is also equipped with a net
launcher for capturing the target drone.

TABLE III: Comparison with the state-of-the-art work and
ablation study in terms of detection and pose estimation
errors. Our method achieves a nearly on-par performance
while recovering 6DoF camera poses.

Method Detect. (Pixel) Rot. (Deg) Trans.(mm)
S3K [12] 1.29 N/A N/A
S3K [12]+UH. 1.12 N/A N/A
S3K [12]+UH.+Ref. 0.77 N/A N/A
S3K [12]+UH.+Ref.+UL. 0.71 N/A N/A
Ours (basic semi-supervision) 1.54 3.98 31.2
Ours+UH. 1.43 3.63 30.4
Ours+UH.+Ref. 0.99 1.59 29.1
Ours+UH.+Ref.+UL. 0.92 1.51 29.1

Fig. 7: Experimental platform for aerial pursuit.

Images are extracted from videos and cropped at the cen-
ter. The cropped images are resized to a size of 320×180 pix-
els. We convert the model to TensorRT with FP16 precision
for inference acceleration and achieve 14 FPS onboard rate.
Distance between the pursuer and target drone varies from
15 m to 2.5 m. We keep the target drone still in the world
frame during the collection, and the pursuer approaches the
target from far to near. Fig. 6 shows the detection results.
We increase the inter-frame distance for each scene and
perform collection in scenes with various backgrounds to
avoid overfitting. As the inter-frame distance is enlarged,
optical flow label propagation [28] [16] tends to fail. An
extremely small fraction of labels, as 1% to 2% in [16],
is far from being sufficient. We manually label all images
as ground truth key point locations. Using the technique
introduced by Fig. 5, we take 11% as the initial labeling
ratio. Ground truth pose is recovered by using PnP as in [7]
with ground truth key points.



Fig. 8: Comparison with state-of-the-art camera pose esti-
mation methods during the aerial pursuit in terms of rotation
error. With the pursuer approaching the target, errors of other
methods increase while ours stay stable.

Since our method can train the detection model together
with 6DoF camera pose estimation, we compare our method
with the state-of-the-art camera pose estimation methods,
i.e. ORB-SLAM3 [33], COLMAP [34] and Orthogonal-n-
Point [35] [36] in terms of reprojection and pose estima-
tion accuracy. Fig. 8 shows the camera-target rotation error
curve. The pursuer approaches the target from far to near
hence the x-axis is inversed. At the beginning stage, of
which the distance is larger than 10 m, the pose estimation
accuracy of all methods is at the same level. With the
pursuer further approaching the target, rotation errors of
COLMAP, ORB-SLAM3, and OnP become larger. The core
reason for the inferior performance of COLMAP or ORB-
SLAM3 is as follows. Although we keep the target drone
motionless throughout the data collection process, hovering
drift is unavoidable in practice. COLMAP and ORB-SLAM3
take static feature points for pose estimation, producing less
accurate poses in the drifting target frame in the long run.
OnP is an approximation method often used when precise
camera parameters are unknown, which produces subpar
estimation results, especially at close range as the depth
variation of 3D points is neglected.

Table IV summarizes the median of errors and computa-
tion time among different scenes of different methods. Our
method outperforms others in terms of reprojection and pose
estimation accuracy. Besides, thanks to the limited number
of visual landmarks fixed on the target and the simpli-
fied estimation scheme, our method takes much less time.
In conclusion, our method produces reprojection-generated
pseudo labels with higher fidelity and efficiency, which is
particularly favorable for dynamic robotic applications such
as aerial pursuit.

TABLE IV: Reprojection and pose estimation comparison.

Method Repro. (pixel) Rot. (degree) Trans. (mm) Time (s)
DPESFM [31] 1.64 25.80 280 0.6

Ours (DPESFM+BA) 1.43 2.82 43 4.0
OnP [36] 1.88 8.54 N/A 207.1

COLMAP [34] 7.03 11.04 251 18,741.8
ORB-SLAM3 [33] 9.92 12.12 305 551.9

Limitations: In the data collection process, the method
estimates camera pose in the target frame. Therefore, only
one target object with semantic key points should be visible

at a time. Detecting key points from multiple moving targets
in a single frame can lead to incorrect pose estimation re-
sults. However, during the online detection process, multiple
targets can be detected simultaneously.

C. Real World Experiment 2: Mobile Robot Formation

In addition to aerial pursuit, we also apply the proposed
method to a mobile robot system. Each robot in the fleet is
equipped with an omnidirectional camera set and an Nvidia
Jetson NX. Semantic key points are used by each robot to
estimate its relative pose to neighboring robots, enabling
leader-follower formation motion based on the relative pose.
We collected 3,762 images of the robot in an indoor environ-
ment and applied our semi-supervised strategy to train the
detection model. Given the effectiveness of the U-net in the
constrained indoor environment, only 127 manually labeled
images were needed, significantly reducing the labeling
workload. Fig. 9 illustrates the vision-based mobile robot
system and the online key point detection results during the
collective motion experiment, demonstrating the versatility
of our method in robotic applications.

Fig. 9: The multi-robot system and online image detection
results. Semantic key points are detected and used for relative
pose estimation in the formation experiment.

V. CONCLUSIONS

This paper introduces a novel semi-supervised method
for training a semantic key point detection model. Our
approach requires only a small fraction of manually labeled
data while estimating full 6DoF camera poses. It proves
particularly beneficial for multi-robot systems where pre-
labeled datasets of custom robot types are hard to obtain. We
conduct experiments on both real-world robotic applications
and public datasets of everyday objects, demonstrating the
effectiveness and accuracy of our method.
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