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Abstract
The comprehension of how local interactions arise in global collective behavior is of utmost
importance in both biological and physical research. Traditional agent-based models often rely on
static rules that fail to capture the dynamic strategies of the biological world. Reinforcement
learning (RL) has been proposed as a solution, but most previous methods adopt handcrafted
reward functions that implicitly or explicitly encourage the emergence of swarming behaviors. In
this study, we propose a minimal predator–prey coevolution framework based on mixed
cooperative–competitive multiagent RL, and adopt a reward function that is solely based on the
fundamental survival pressure, that is, prey receive a reward of−1 if caught by predators while
predators receive a reward of+1. Surprisingly, our analysis of this approach reveals an
unexpectedly rich diversity of emergent behaviors for both prey and predators, including flocking
and swirling behaviors for prey, as well as dispersion tactics, confusion, and marginal predation
phenomena for predators. Overall, our study provides novel insights into the collective behavior of
organisms and highlights the potential applications in swarm robotics.

1. Introduction

Swarming behaviors in the nature, such as starling flocks, fish schools, and sheep herds [1], have been
studied across various research fields, including biology [2], physics [3], and robotics [4]. Various
agent-based models have been proposed to understand these collective behaviors. Most models are
constructed based on designed static rules, including velocity alignment rules [3], a balance of social forces
including attraction and repulsion [5, 6], and vision-based movement decisions [7–10]. Although these
models can phenomenally give rise to swarming behaviors including complex ring-shaped and swirling
patterns [6, 11, 12], the interaction rules are mostly heuristic and static, failing to capture the adaptation
property of the biological world. To address this issue, recent studies have utilized evolution-based methods
including neuroevolution [13] and reinforcement learning (RL) methods [14–17], because they offer the
potential for adaptable strategies, analogous to the way biological organisms evolve [18–20]. In addition,
multi-agent RL allows to model the interactions among individual agents in a swarm, and to optimize their
collective behaviors [14–17].

However, the interaction mechanism or reward functions in evolution-based methods [13–17] are
task-specific [21, 22] meaning they are handcrafted by designers to intentionally fit for the characteristics
implicitly or explicitly associated to swarming behaviors, which we refer to as swarm-dependent in this study.
For example, the reward function in [16] penalizes losing neighbors. That is, if an agent loses its neighbor, it
receives a penalty of−1. The recent work in [17] assumes prey receive larger reward as the area of domain of
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danger decreases [23], thus explicitly encouraging prey agents to move closer to each other. The authors in
[13] implicitly assume the attack efficiency is inversely proportional to the number of prey visible to the
predator due to confusion. As a result, the number of prey in low-density areas reduces faster than that in
high-density areas, resulting in a clustering phenomenon as anticipated. A similar confusion mechanism is
used in [15].

In this study, we propose a minimal predator–prey coevolution framework based on mixed
cooperative-competitive multiagent RL, where the reward function is solely based on the motivation to
survive for both predators and prey. Specifically, prey receive a reward of−1 if caught by predators while
predators receive a reward of+1. This reward function has no relation to objectives such as increasing
neighbors, decreasing sparsity, enhancing alignment, or promoting other characteristics directly associated
with swarming behaviors, thus swarm-independent. Surprisingly, under the proposed framework, we find the
simple survival pressure is sufficient to evolve flocking and swirling behaviors for prey. Quantitatively, we
observe a steady increase in swarming density and group polarization. We also observe the emergent
dispersion tactic, confusion and marginal predation phenomena for predators.

2. Modeling

2.1. Environment
We established a physics-based simulation environment where predators and prey interact with each other.
The environment is a two-dimensional continuous space with two kinds of boundary conditions. As we will
demonstrate in section 4, distinct boundary conditions will encourage flocking or swirling behaviors. The
first kind is a finite square area, commonly used in previous studies such as [24, 25]. In this space, agents are
unable to cross the boundaries, which are simulated as walls with a specified contact stiffness. The second
kind is periodic boundary condition where an agent passes through one side of the square environment
re-appears on the opposite side with the same velocity. This treatment wraps around the edges of the
environment into a torus, thus enabling us to approximate a large or infinite space. Periodic boundary
condition is widely used in molecular dynamics simulation [26] and swarm modeling [3, 16].

2.2. Agent dynamics
An agent, namely a predator or prey, is represented by a circle with a short line segment representing its
heading, as shown in figure 1(a), where the unit vector h ∈ R2,∥h∥= 1 is the heading and v ∈ R2 is the
velocity. The agents are subject to both active and passive forces.

The active force is self-generated propulsion to drive ego-motion, and consists of two components as
shown in figure 1(a). The first component is the action to move forward aligned with the heading and
computed as aFh ∈ R2 where aF ∈ R. The second component is the action to rotate its heading, and is
denoted as aR ∈ R within a threshold value.

The passive forces include dragging force fd ∈ R2, elastic force between contact agents fa ∈ R2 as shown
in figure 1(b), and elastic force between agents and boundaries fb ∈ R2 as shown in figure 1(c). The dragging
force is simply assumed to be in the opposite direction of velocity v with its magnitude proportional to ∥v∥.
Elastic forces fa and fb follow Hooke’s law, and sum up when an agent contacts multiple other agents or
boundaries as fa =

∑
j fa,j and fb =

∑
j fb,j. The elastic forces prevent agents overlap and reflect physical

collision dynamics. It is remarked that the velocity may not be aligned with the heading direction when a
collision happens. In the simulation, the drag coefficient is set as 2N·sm−1 and the contact stiffness
coefficient is set as 50Nm−1.

Combining the aforementioned active and passive forces, the dynamics of an agent of species i can be
summarized as follows:

ẋ= v, (1a)

v̇= (aFh+ fd + fa + fb)/mi , (1b)

θ̇ = aR, (1c)

where x ∈ R2 is the position,mi ∈ R+ is the mass, θ ∈ (−π,π]⊂ R is the heading angle and
h= [cosθ, sinθ]T.

2



New J. Phys. 25 (2023) 092001

Figure 1. Illustration of active and passive forces.

2.3. Agent observation
The observation model of an agent is assumed to be dependent on both metric and topological distance.
Metric dependence means an agent can only perceive others in its perception range [13, 14] which is
assumed to be a disk with a pre-defined radius R ∈ R+ for simplicity. Topological dependence refers to how
many at most an agent can perceive concurrently rather than how far away. The threshold is set as 6 which
means an agent can perceive at most six allies and six adversaries. This setting is inspired by the work in [27]
that each bird interacts on average with six neighbors, and further confirmed in the recent work [12]. The
information contained in an observation vector includes relative position and heading of observed agents for
both allies and adversaries, and the agent’s own position, velocity and heading. If the number of agents in the
perception range exceeds the topological threshold, the farthest ones are removed, and if it does not reach the
threshold, the rest part of the observation vector are masked out with zeros. This topological modeling
simplifies the structure of neural networks by fixing the input dimension.

3. Framework of coevolution

The optimization regime is set as a mixed cooperative–competitive multiagent RL framework where
predators and prey are learning and adapting their behaviors concurrently analogous to the coevolution in
the nature.

3.1. Homogeneity
Agents of the same species in a swarm are assumed to be homogeneous. This is reasonable when each agent
has the same capability, responsibility, and goal as the others. More importantly, agents in a swarm typically
display similar behavior patterns following the same interaction rule [7, 8, 28]. Homogeneity has been widely
adopted in the modeling of swarm systems. For example, works such as those in [3, 5, 7–12] propose
singleton control laws that dominate all the agents in a swarm, while those in [14–17] employ
parameter-sharing techniques for the agents’ neural networks. As a result, the homogeneity leads to two
features of the proposed training regime: parameter-sharing of actor-critic networks and replay buffer
sharing among conspecifics, which are described as follows.

3.2. Actor-critic
Conspecifics share one critic and one actor network. The critic network is used to evaluate the quality of an
action taken by the agent, by estimating the expected future reward from that action, while the actor
determines the agent’s action a= [aF,aR]T based on its current observation. Together, the critic and actor
work to improve the agent’s behavior over time, by continuously refining its estimates of expected future
rewards and adjusting its policy accordingly.

The critic is designed to be decentralized allowing agents to evaluate based solely on local observations,
without the knowledge of global states and actions like centralized critics used in [25, 29]. This is analogous
to the situation when living organisms can only perceive nearby surroundings with limited abilities.
Additionally, a decentralized critic provides better scalability as the number of agents in the system increases,
making it particularly beneficial for swarm systems.

The actor is shared by conspecifics but not for their adversaries. Policy-sharing technique has been widely
used in traditional agent-based models [3, 5, 7–12], and learning-based methods [14–17]. An advantage of
policy-sharing is that the trained policy can be deployed across any number of agents of the same kind
making it perfect for swarming research. It is remarked that although the parameters of the policy are shared,
the output actions from the policy for each agent are different because they have different observations.

3.3. Replay buffer
When an agent takes an action in a given state, it receives a reward and transitions to a next state. The replay
buffer is used to store such transitions of the agent interacting with the environment in the form of tuples:
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state, action, reward and next state. The replay buffer serves to reduce correlations between consecutive
experiences by exposing the agent to a more diverse set of experiences, thus helping to avoid over-fitting and
stabilize the training process.

Two replay buffers B0 and B1 are used for predators and prey, respectively. There is no need to construct
replay buffers for each individual because the homogeneity allows for interchangeable use of the experiences
collected by conspecifics. Therefore, experiences collected from multiple conspecifics can be congregated
into a single replay buffer, resulting in more resilient and effective learning outcomes.

3.4. Rewards
The reward for prey is simply set as r=−1 if it is caught by a predator, where the catch is represented by a
contact between the two agents. Compared to the swarm-dependent interaction mechanisms or reward
functions in [13–17], the proposed reward function solely emphasizes the potential dangers of remaining in
close proximity to predators, thus swarm-independent. Similarly, the reward for a predator is r=+1 if it
catches prey. It is remarked that prey agents are not removed from the simulation after being caught by
predators. The contact between predators and prey can be likened to a continuous process where predators
extract energy from the prey while engaged in ‘eating’ them. Upon separation, the prey’s survival reward
returns to zero, signifying the cessation of energy transfer analogous to the termination of ‘bleeding’. A
decorative reward that mimics energy consumption due to movement is added to the essential survival
reward, which is simply set as−0.01|aF| − 0.1|aR|. This reward function will cause the agent to exhibit
laziness.

In the special case when boundaries exist in the environment, an additional penalty−0.1 is added to the
reward function when contact between agents and boundaries happens. This setting is designed to simulate
either the presence of danger in the outside world or the situation where an agent chooses not to leave a
specific location, such as a food-rich coral reef.

3.5. Algorithm
The algorithm primarily adopts the multiagent deep deterministic policy gradient method as proposed in
[25, 30]. However, certain modifications have been made to the original method, which are summarized as
follows: (1) to account for the limited perception capabilities of agents, a decentralized critic has been
employed in lieu of a centralized one; (2) agents of conspecifics share one actor network but not for their
adversaries; (3) experiences collected by conspecifics are merged into a single replay buffer for more effective
learning.

We designate the predators and prey as species 0 and 1, respectively. The dimensionality of the
observation and action vectors are denoted as do and da, respectively. We denote the discount factor, which
determines the weight given to future rewards, as γ, and the soft update rate, which determines the speed at
which a target network is updated towards a learning network, as τ . The proposed algorithm is summarized
in algorithm 1.

Algorithm 1.Multiagent deep deterministic policy gradient algorithm for predator–prey coevolution.

// i= 0 for predators, i= 1 for prey
for species i= 0 to 1 do

Randomly initialize actor µi parametrized by θµi and critic Qi parametrized by θQi ;
Initialize target actor µ ′

i and target critic Q ′
i , θ

′µ
i ← θµi , θ

′Q
i ← θQi ;

end
for episode= 1 to M do

Randomly spawn n0 predators and n1 prey; receive observations oi ∈ Rni×do ;
for t= 1 to max-episode-length do
for all agents in species i, select actions ai = µθi(oi)+Nt ∈ Rni×da whereNt is Gaussian noise;
Execute actions ai, receive reward ri ∈ Rni and new observations o ′

i ∈ Rni×do ;
Store (oi,ai, ri,o

′
i ) ∈ (Rni ×do ,Rni ×da ,Rni ,Rni ×do) in replay buffer Bi;

oi ← o ′
i ;

Randomly sample a mini-batch of S ∈ N+ samples (oji,a
j
i, r

j
i,o

′j
i ) ∈ (Rdo ,Rda ,R,Rdo) from Bi;

Set yji = rji + γQ ′
i (o

′j
i ,a

′j
i )|a ′j

i =µ ′
i (o

′j
i )
;

Update critics by minimizing the loss L(θQi ) =
1
S

∑S
j=1

(
y ji −Qi(o

j
i ,a

j
i )
)2

;

Update actors using sampled policy gradient∇θ
µ
i
J≈ 1

S

∑S
j=1∇θ

µ
i
µi(o

j
i )∇µi(o

j
i )
Qi (o

j
i ,µi(o

j
i ));

Soft-update target network parameters θ ′µ
i ← τθµi +(1− τ)θ ′µ

i , θ ′Q
i ← τθQi +(1− τ)θ ′Q

i ;
end

end
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Figure 2. (a) Before coevolution. (b) After coevolution.

4. Results and analysis

4.1. Simulation setup
In the training phase, we instantiate n0 = 3 predators and n1 = 10 prey in the environment. This selection of
population size is based on the assessment of hardware performance, as having more agents in the
environment requires longer computation time. Nevertheless, the population size can be arbitrary as the
policy is decentralized. In the evaluation phase, we deploy the trained policy on 50 prey, to yield a more
distinct visual effect of swarming behaviors, whilst maintaining the same number of predators.

In order to provide a quantitative assessment of swarming behaviors, we introduce two measures: degree
of sparsity (DoS) and degree of alignment (DoA). The DoS ∈ [0,1]⊂ R is defined as the average normalized
distance to the nearest neighborhood of all conspecifics in an episode as

DoS=
1

TND

T∑
t=1

N∑
j=1

∥xj(t)− xk(t)∥ (2)

where xj(t) is jth agent position at time step t, k= argmin∥xj(t)− xk(t)∥,k ∈ {1,2, . . . ,N}\j, T ∈ N+ is
episode length, N ∈ N+ is the total number which is equal to n1 for prey, D ∈ R+ is the environment size
defined as the maximum possible distance for two agents. For example, for a periodic square environment
with edge length 2, the largest possible distance is

√
2. The symbol ∥ · ∥ : R2 → R denotes the Euclidean

norm mapping. A smaller DoS indicates a denser swarm. An extreme case is when all conspecifics aggregate
at the same point resulting in zero DoS. The definition of DoA ∈ [0,1]⊂ R is

DoA=
1

2TN

T∑
t=1

N∑
j=1

∥hj(t)+ hk(t)∥ (3)

where hj ∈ R2 is the heading of jth agent, k is the same as in the definition of DoS. It is worthy to remark that
DoA is not equivalent to the mean heading of all conspecifics. This is because although the headings are
similar in the same flock resulting in a high DoA, multiple flocks with different headings may cancel each
other, as shown in figures 2(b) and 8(b). Therefore, calculating the relative quantity within a local
neighborhood is more appropriate. A similar conclusion can be drawn for DoS.

4.2. Emergent flocking behavior
A typical scenario before and after evolution are shown in figures 2(a) and (b), respectively. The predators
are depicted in orange, while the prey are in blue and a smaller size. Prior to evolution, the prey move
randomly in different directions due to randomly initialized policy. Similarly, predators exhibit purposeless
movements without the intention to pursue prey. The agents’ behavior has undergone substantial changes
after 2000 episodes of coevolution, as depicted in figure 2(b). Notably, the prey exhibit a remarkable
emergence of cohesive movement patterns and a high DoA within multiple flocks, adhering to the
well-known flocking basic rules outlined in [31].

The episodic evolution of running average of DoS and DoA is shown in figure 3, where the running
average length is 100-episode and the shaded area indicates 95% confidence interval. Specifically, the DoS
drops steadily from 22% of the environment size to around 19% suggesting a more cohesive movement of
prey. Meanwhile, the DoA increases from 0.65 to approximately 0.82 indicating any two prey in the vicinity
exhibit a higher DOA. It is remarked that the initial value of DoA is about 0.65. This is because for a
uniformly distributed heading angle ranging from−π to π, the expected DoA is given by
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Figure 3. Episodic evolution of DoS and DoA.

Figure 4. Time evolution of DoS and DoA in an episode by loading trained policies on agents.

E[cos(ϕ/2)] = 2/π ≈ 0.64, where ϕ denotes the angle formed by two headings. This expected value is quite
close to the value read from figure 3.

The DoS and DoA shown in figure 3 is a mean value computed from the entire episode, as indicated by
1/T

∑T
t=1(·) in equations (2) and (3). For established flocks, as shown in figure 2(b) or figure 7, the DoS is

lower than 19% while its DoA exceeds 0.82. This can be shown by loading trained policies into agents, and
plotting the DoS and DoA as functions of time steps in an episode, as shown in figure 4. In this case, the DoS
decreases to approximately 15% while the DoA reaches around 0.96.

It is possible to question whether the observed alignment and distance reduction between neighboring
prey is a result of swarming or merely a consequence of prey fleeing from predators in the same direction,
which is commonly referred to as herding. To differentiate between these two phenomena, we conducted
additional simulations where only trained prey agents are present. A typical scenario is illustrated in
figure 5(a), where we observe that the prey still exhibit a high DOA even in the absence of predators, which is
comparable to the well-known Vicsek model [3]. This finding further supports the hypothesis that swarming
behavior observed in the absence of predators is a strategy employed by prey to avoid predators.

These findings are noteworthy because they reveal how simple predator–prey interaction, driven solely by
the motivation to survive, could give rise to conspicuous flocking behavior that exhibits both cohesion and
alignment characteristics. This leads us to hypothesize that the emergent flocking behavior is largely an
outcome of passive space extrusion and polarization induced by predators.

4.3. Emergent confusion effect, dispersion tactic and edge effect
During the pursuit, predators exhibit confusion in certain situations, as illustrated in figures 6(a) and (b) at
time step 30 and 33 of an episode. When the prey agent merges into a flock, the predator gives up the chase,
slows down, and stagnates for a while as evidenced by a shorter path, appearing confused and uncertain
about which prey to focus on.

Additionally, as shown in figure 7(a), predators often employ a dispersion tactic, in which they first move
towards the center of a swarm to disperse it and then focus on isolated ones to capture [32, 33]. The resulting
isolation or the phenomenon that predators frequently catch prey on the periphery of a swarm is referred to
asmarginal predation or edge effect [34, 35], as shown in figure 7(b). The observed marginal predation
behavior suggests that predators may be less confused when targeting prey on the periphery of a swarm,
potentially due to a smaller number of prey resulting in an elevated predation rate [33, 36], or a higher
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Figure 5. (a) Remove predators after training with predators. (b) Remove predators in training.

Figure 6. Confusion effect. (a) t = 30. (b) t = 33.

Figure 7. (a) Dispersion tactic. (b) Edge effect.

encounter rate [34]. Overall, the emergent confusion effect and marginal predation behavior highlight the
challenges predators face when trying to select the optimal target from a group of prey.

4.4. Emergent swirling behavior
We now examine the scenario when the environment is confined, and consider two cases: without and with
penalties when prey collide with boundaries. It is remarked that the extra boundary penalty will complicate
the environment, thus slowing down the learning process. To accelerate the evolution of prey, we endow the
predators a behavioral rule that creates survival pressure by directly moving towards their nearest prey. This
rule controls two active forces: first, the predator rotates its heading to point towards the nearest prey, and
then it moves directly towards the target at maximum speed. By following this rule, the predators exert
survival pressure on the prey and drive their evolutionary adaptation.

Without penalty, there are no significant differences in flocking behaviors compared to the infinite space
case, except for boundary aggregation, as in figure 8(a), similar to fish swimming in a fishbowl or pond. With
penalty, an enigmatic swirling behavior emerges as in figure 8(b). Such circular motion has been observed in
fish and insects, yet it is hardly understood and still remains unclear in the scientific community [37, 38]. We
hypothesize that the extra penalty acts as a disincentive for prey to leave a food-rich location, such as coral
reefs, or a response to perceived threats in the outside world. Swirling may be an optimal tactic for prey to
remain at the same place while simultaneously evading potential predators.

7
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Figure 8. In a confined space. (a) Without boundary penalty. (b) With boundary penalty.

Figure 9. Effect of speed limit ratio.

4.5. Effect of speed limit ratio
In prior studies, we assume a maximum speed ratio ∥v0∥max : ∥v1∥max = 1 : 1 between predators and prey.
This assumption is reasonable when predator and prey species have similar maximum speeds. Here, we
investigate the emergent phenomenon when their maximum speeds have a distinct difference.

As shown in figure 9, adjusting the speed limit ratio to 5 : 3, we observe more pronounced swarming
characteristics evidenced by a smaller DoS dropping from 19% to 18% and a larger DoA rising from 0.82 to
around 0.85. Further, tuning the speed limit ratio to 3 : 5 results in a higher convergence rate of DoS and a
lower value of around 17%, attributed to prey’s athletic ability to evade predators while still maintaining
formation.

4.6. Effect of perception range
In other simulations, predators and prey are assumed to have a perception range equal to the environment
size, that is, R=D, which is reasonable when organisms have a perception range much larger than their body
length. Here, we intentionally tune the perception range to be R= 2/3D and R= 1/3D to investigate its
effect on flocking behaviors, as shown in figure 10.

Smaller perception ranges lead to less pronounced flocking behavior, as indicated by a larger DoS and
smaller DoA. This effect is especially notable when the perception range is only one-third of the environment
size, where DoS increases from 19% to around 20.5%, and DoA drops from 0.82 to 0.75. These findings
suggest that perception range plays a crucial role in facilitating the emergence of flocking behaviors.

4.7. Effect of number of predators
In previous simulations, the number of predators present in training is set as n0 = 3. Here, we specifically
investigate the special cases where the number of predators during evolution are n0 = 0 and n0 = 1. The
episodic evolutions of DoS and DoA are shown in figure 11.

Comparing the cases of a single predator and three predators, we observe that the emergence of
swarming behaviors is slightly slower with a single predator. This can be explained by the greater survival
pressure exerted by multiple predators, which accelerates the prey’s evolution. In the special case without
predators in the evolution, it can be seen that the DoS and DoA of the prey remain unchanged, indicating
that no swarming phenomenon emerges, as exemplified in figure 5(b). This evidence, from another
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Figure 10. Effect of perception range.

Figure 11. Effect of number of predators.

perspective, further corroborates our hypothesis that predator–prey survival pressure is sufficient to promote
swarming behaviors.

5. Discussion and conclusion

In this article, a minimal predator–prey coevolution framework based on mixed cooperative–competitive
multiagent RL is proposed, with a swarm-independent reward function based solely on the motivation to
survive. We have observed the emergent flocking and swirling behaviors for prey, and dispersion tactic,
confusion and marginal predation phenomena for predators. Based on these findings, we hypothesize
swarming behaviors can be largely an outcome of passive space extrusion and polarization induced by
predators. At the same time, predators may face challenges when trying to select their optimal target from a
group of prey. While the proposed framework may not perfectly match the real evolution mechanism in the
nature and may not depict the evolution process of all kinds of swarming organisms, it provides a feasible
approach for swarming research without the need for handcrafted reward function design.

With the design philosophy ofminimalism, the proposed framework could serve as a starting point for
further experimentation and customization. For instance, one could perform a quantitative analysis on the
effect of observation noise, or introduce a third-party species to study emergent behaviors. In the field of
robotics, collision penalties can be further incorporated into reward functions to realize collision avoidance
simultaneously, enabling robots to exhibit swarming behaviors in a more natural manner without complex
handcrafted interaction rules. Overall, the proposed framework and findings could contribute to a better
understanding on swarm intelligence of organisms and physical active matter, and have potential
applications in swarm robotics.
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Appendix A. Video abstract and animations

The video abstract and simulation animations of figures 2 and 5–8 can be found in the supplementary
materials.

Appendix B. Implementation details

We provide more implementation details about the established predator–prey environment and the
proposed coevolution algorithm. In the numerical simulation, the agent dynamics described in equation (1)
are performed at discrete time steps. For an agent of species i, its states at time step t+ 1 are updated in the
following order:

θ(t+ 1) = θ(t)+ aR∆t,

v(t+ 1) = v(t)+ (aFh+ fd + fa + fb)∆t/mi,

x(t+ 1) = x(t)+ v(t)∆t,

where∆t is the time step with its value shown in table 1. In the periodic boundary condition, when an agent
moves beyond one edge of the environment, its position is further updated such that it reappears on the
opposite edge as if the edges were connected. For example, if the agent has moved beyond the maximum
x-coordinate, we then set its x-coordinate to the minimum x-coordinate plus the distance it has moved
beyond the maximum x-coordinate. The agent’s actions aF and aR are the outputs of the actor neural
network, and re-scaled to fit within specified ranges as shown in table 1. Specifically, aF ranges from zero to
its maximum linear acceleration, while aR ranges from negative maximum angular velocity to positive
maximum angular velocity. To calculate fa, we first analyze whether any two agents collide based on their
sizes and distances. If collision occurs, we then apply Hooke’s law to calculate the elastic forces resulting from
the deformation, and sum them up as fa =

∑
j fa,j if multiple collisions happen. The procedure of calculating

fb is the same.
The observation vector for an agent has the following form: agent’s own pos., vel. and heading,

relative pos. and headings of observed predators,
relative pos. and headings of observed prey

 .

The relative positions and headings are reordered from the nearest to the farthest based on range. This is
reasonable as conspecifics are considered as homogeneous, as explained in section 3. If the number of
observed agents exceeds the topological limit, the farthest ones are removed, and if it does not reach the
limit, the rest part of the observation vector is masked out with zeros.

Both critic and actor are encoded by deep feed-forward neural networks with rectified linear unit
activation with an input dimension do equivalent to the length of the observation vector. Each network
consists of three hidden layers with 64 neurons per layer as shown in figure 12, where da = 2 is the output
dimension of the actor network and aF,aR are the output actions.

For a detailed introduction to RL and multi-agent RL, we refer to [18, 39, 40], respectively. For an
introduction to multiagent deep deterministic policy gradient algorithm, we refer to [25]. In the training, we
first randomly initialize the actor network µi parameterized by θµi and the critic network Qi parameterized
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Table 1. Environment parameters.

Parameter Value Unit

Mass of predator 1 kg
Mass of prey 1 kg
Max speed 0.5 or 0.3 m s−1

Max linear acc. 1 m s−2

Max angular vel. 0.5 rad s−1

Env edge length 2 m
Contact stiffness 50 Nm−1

Drag coefficient 2 N·sm−1

Time step 0.1 s

Figure 12. Illustration of critic and actor neural networks.

by θQi for species i. In this study, predators and prey are denoted as species i= 0 and 1, respectively. The
corresponding target actor µ ′

i and critic Q ′
i are also initialized to help mitigate the issue of non-stationarity

by slowly updating the value functions as policy improves. At the beginning of each episode, n0 ∈ N+

predators and n1 ∈ N+ prey are placed in the environment at random positions with random headings.
Based on current observations oi ∈ Rni×do where do is the dimension of the observation vector, the agents
perform actions ai ∈ Rni×da according to current actors where da is the dimension of the action, receive
rewards ri ∈ Rni , and obtain new observations o

′
. The resulting experience tuple (oi,ai, ri,o ′i ) are saved into

replay buffer Bi.
In learning, agents draw a random mini-batch of S ∈ N+ samples from Bi, and each sample is denoted as

(oji,a
j
i, r

j
i,o

′j
i ) ∈ (Rdo ,Rda ,R,Rdo). The critic is updated by minimizing the loss:

L(θQi ) =
1

S

S∑
j=1

(
yji −Qi(o

j
i,a

j
i)
)2

where the target value yji = rji + γQ ′
i (o

′j
i ,a

′j
i ), a

′j
i = µ ′

i (o
′j
i ). To update the actor, the policy gradient theorem

[30] is used, and the gradient is approximated as:

∇θµ
i
J≈ 1

S

S∑
j=1

∇θµ
i
µi(o

j
i)∇µi(o

j
i)
Qi (o

j
i,µi(o

j
i)).

Finally, the target networks are soft-updated accordingly. The exploration rate ε is the probability that the
agent will choose to explore the environment instead of exploiting it. In this study, ε is set to gradually
decrease with each episode achieved by using the formula max(0.05, ϵ− 5× 10−5). Similarly, the action
noiseNt is also set to decrease gradually with each episode as max(0.05, Nt − 5× 10−5), with their initial
values shown in table 2. The learning process is carried out until a state of dynamic equilibrium is achieved
between the predators and prey, such that neither party can obtain their future rewards by altering their
respective policies. The hyper-parameters for the proposed algorithm are summarized in
table 2.
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Table 2.Hyper-parameters of algorithm.

Hyper-parameter Value

Number of episodes 2000
Episode length 100
Number of hidden layers 3
Hidden layer size 64
Learning rate of actor 1× 10−4

Learning rate of critic 1× 10−3

Discount factor 0.95
Soft-update rate 0.01
Initial exploration rate 0.1
Initial noise rate 0.1
Replay buffer size 5× 105

Batch size 256
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